Datasets:

Tasks:
Other
Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
File size: 8,643 Bytes
ea62e45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32a04d2
ea62e45
32a04d2
 
 
 
 
ea62e45
 
 
 
ed442a0
ea62e45
 
 
 
 
 
 
32a04d2
ea62e45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32a04d2
ea62e45
 
 
 
 
 
 
 
 
 
 
 
ed442a0
ea62e45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Generics KB: A Knowledge Base of Generic Statements"""


import ast
import csv

import datasets


# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {GenericsKB: A Knowledge Base of Generic Statements},
authors={Sumithra Bhakthavatsalam, Chloe Anastasiades, Peter Clark},
year={2020},
publisher = {Allen Institute for AI},
}
"""

_DESCRIPTION = """\
The GenericsKB contains 3.4M+ generic sentences about the world, i.e., sentences expressing general truths such as "Dogs bark," and "Trees remove carbon dioxide from the atmosphere." Generics are potentially useful as a knowledge source for AI systems requiring general world knowledge. The GenericsKB is the first large-scale resource containing naturally occurring generic sentences (as opposed to extracted or crowdsourced triples), and is rich in high-quality, general, semantically complete statements. Generics were primarily extracted from three large text sources, namely the Waterloo Corpus, selected parts of Simple Wikipedia, and the ARC Corpus. A filtered, high-quality subset is also available in GenericsKB-Best, containing 1,020,868 sentences. We recommend you start with GenericsKB-Best.
"""

_HOMEPAGE = "https://allenai.org/data/genericskb"

_LICENSE = "cc-by-4.0"

_BASE_URL = "data/{0}"

_URLS = {
    "generics_kb_best": _BASE_URL.format("GenericsKB-Best.tsv.gz"),
    "generics_kb": _BASE_URL.format("GenericsKB.tsv.gz"),
    "generics_kb_simplewiki": _BASE_URL.format("GenericsKB-SimpleWiki-With-Context.jsonl.gz"),
    "generics_kb_waterloo": _BASE_URL.format("GenericsKB-Waterloo-With-Context.jsonl.gz"),
}


class GenericsKb(datasets.GeneratorBasedBuilder):
    """The GenericsKB is the first large-scale resource containing naturally occurring generic sentences, and is rich in high-quality, general, semantically complete statements."""

    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="generics_kb_best",
            version=VERSION,
            description="This is the default and recommended config. Comprises of GENERICSKB generics with a score > 0.234 ",
        ),
        datasets.BuilderConfig(
            name="generics_kb", version=VERSION, description="This GENERICSKB that contains 3,433,000 sentences."
        ),
        datasets.BuilderConfig(
            name="generics_kb_simplewiki",
            version=VERSION,
            description="SimpleWikipedia is a filtered scrape of SimpleWikipedia pages (simple.wikipedia.org)",
        ),
        datasets.BuilderConfig(
            name="generics_kb_waterloo",
            version=VERSION,
            description="The Waterloo corpus is 280GB of English plain text, gathered by Charles Clarke (Univ. Waterloo) using a webcrawler in 2001 from .edu domains.",
        ),
    ]

    DEFAULT_CONFIG_NAME = "generics_kb_best"

    def _info(self):
        if self.config.name == "generics_kb_waterloo" or self.config.name == "generics_kb_simplewiki":
            featuredict = {
                "source_name": datasets.Value("string"),
                "sentence": datasets.Value("string"),
                "sentences_before": datasets.Sequence(datasets.Value("string")),
                "sentences_after": datasets.Sequence(datasets.Value("string")),
                "concept_name": datasets.Value("string"),
                "quantifiers": datasets.Sequence(datasets.Value("string")),
                "id": datasets.Value("string"),
                "bert_score": datasets.Value("float64"),
            }
            if self.config.name == "generics_kb_simplewiki":
                featuredict["headings"] = datasets.Sequence(datasets.Value("string"))
                featuredict["categories"] = datasets.Sequence(datasets.Value("string"))

            features = datasets.Features(featuredict)

        else:
            features = datasets.Features(
                {
                    "source": datasets.Value("string"),
                    "term": datasets.Value("string"),
                    "quantifier_frequency": datasets.Value("string"),
                    "quantifier_number": datasets.Value("string"),
                    "generic_sentence": datasets.Value("string"),
                    "score": datasets.Value("float64"),
                }
            )

        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features,
            # specify them here. They'll be used if as_supervised=True in
            # builder.as_dataset.
            supervised_keys=None,
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        filepath = dl_manager.download_and_extract(_URLS[self.config.name])

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": filepath,
                },
            ),
        ]

    def _generate_examples(self, filepath):
        """Yields examples."""

        if self.config.name == "generics_kb_waterloo" or self.config.name == "generics_kb_simplewiki":
            with open(filepath, encoding="utf-8") as f:
                for id_, row in enumerate(f):
                    data = ast.literal_eval(row)

                    result = {
                        "source_name": data["source"]["name"],
                        "sentence": data["knowledge"]["sentence"],
                        "sentences_before": data["knowledge"]["context"]["sentences_before"],
                        "sentences_after": data["knowledge"]["context"]["sentences_after"],
                        "concept_name": data["knowledge"]["key_concepts"][0]["concept_name"],
                        "quantifiers": data["knowledge"]["key_concepts"][0]["quantifiers"],
                        "id": data["id"],
                        "bert_score": data["bert_score"],
                    }
                    if self.config.name == "generics_kb_simplewiki":
                        result["headings"] = data["knowledge"]["context"]["headings"]
                        result["categories"] = data["knowledge"]["context"]["categories"]

                    yield id_, result
        else:
            with open(filepath, encoding="utf-8") as f:
                # Skip the header
                next(f)

                read_tsv = csv.reader(f, delimiter="\t")

                for id_, row in enumerate(read_tsv):
                    quantifier = row[2]
                    quantifier_frequency = ""
                    quantifier_number = ""

                    if quantifier != "":
                        quantifier = ast.literal_eval(quantifier)
                        if "frequency" in quantifier.keys():
                            quantifier_frequency = quantifier["frequency"]
                        if "number" in quantifier.keys():
                            quantifier_number = quantifier["number"]
                    yield id_, {
                        "source": row[0],
                        "term": row[1],
                        "quantifier_frequency": quantifier_frequency,
                        "quantifier_number": quantifier_number,
                        "generic_sentence": row[3],
                        "score": row[4],
                    }