Datasets:

Tasks:
Other
Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
File size: 12,298 Bytes
ea62e45
 
 
 
 
a549874
ea62e45
a549874
432a736
ea62e45
 
 
432a736
 
ea62e45
 
 
 
0d4088f
2b23700
530c33a
cff62b4
 
 
 
 
0d4088f
 
4b387a0
cff62b4
4b387a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb76b79
cff62b4
eb76b79
 
cff62b4
4b387a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cff62b4
 
 
 
4b387a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
830f2d1
4b387a0
830f2d1
 
4b387a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66cf90a
4b387a0
66cf90a
 
cff62b4
eb76b79
 
 
 
cff62b4
 
 
 
 
830f2d1
 
 
 
66cf90a
 
 
 
ea62e45
 
 
 
 
 
 
2b23700
ea62e45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ee4373
ea62e45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ee4373
 
 
0d4088f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
---
annotations_creators:
- machine-generated
language_creators:
- found
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
- 1M<n<10M
source_datasets:
- original
task_categories:
- other
task_ids: []
paperswithcode_id: genericskb
pretty_name: GenericsKB
config_names:
- generics_kb
- generics_kb_best
- generics_kb_simplewiki
- generics_kb_waterloo
tags:
- knowledge-base
dataset_info:
- config_name: generics_kb
  features:
  - name: source
    dtype: string
  - name: term
    dtype: string
  - name: quantifier_frequency
    dtype: string
  - name: quantifier_number
    dtype: string
  - name: generic_sentence
    dtype: string
  - name: score
    dtype: float64
  splits:
  - name: train
    num_bytes: 348152086
    num_examples: 3433000
  download_size: 140633166
  dataset_size: 348152086
- config_name: generics_kb_best
  features:
  - name: source
    dtype: string
  - name: term
    dtype: string
  - name: quantifier_frequency
    dtype: string
  - name: quantifier_number
    dtype: string
  - name: generic_sentence
    dtype: string
  - name: score
    dtype: float64
  splits:
  - name: train
    num_bytes: 99895659
    num_examples: 1020868
  download_size: 39007320
  dataset_size: 99895659
- config_name: generics_kb_simplewiki
  features:
  - name: source_name
    dtype: string
  - name: sentence
    dtype: string
  - name: sentences_before
    sequence: string
  - name: sentences_after
    sequence: string
  - name: concept_name
    dtype: string
  - name: quantifiers
    sequence: string
  - name: id
    dtype: string
  - name: bert_score
    dtype: float64
  - name: headings
    sequence: string
  - name: categories
    sequence: string
  splits:
  - name: train
    num_bytes: 10039243
    num_examples: 12765
  download_size: 3895754
  dataset_size: 10039243
- config_name: generics_kb_waterloo
  features:
  - name: source_name
    dtype: string
  - name: sentence
    dtype: string
  - name: sentences_before
    sequence: string
  - name: sentences_after
    sequence: string
  - name: concept_name
    dtype: string
  - name: quantifiers
    sequence: string
  - name: id
    dtype: string
  - name: bert_score
    dtype: float64
  splits:
  - name: train
    num_bytes: 4277200021
    num_examples: 3666725
  download_size: 2341097052
  dataset_size: 4277200021
configs:
- config_name: generics_kb
  data_files:
  - split: train
    path: generics_kb/train-*
- config_name: generics_kb_best
  data_files:
  - split: train
    path: generics_kb_best/train-*
  default: true
- config_name: generics_kb_simplewiki
  data_files:
  - split: train
    path: generics_kb_simplewiki/train-*
- config_name: generics_kb_waterloo
  data_files:
  - split: train
    path: generics_kb_waterloo/train-*
---

# Dataset Card for Generics KB

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [Homepage](https://allenai.org/data/genericskb)
- **Repository:** [Repository](https://drive.google.com/drive/folders/1vqfVXhJXJWuiiXbUa4rZjOgQoJvwZUoT)
- **Paper:** [Paper](https://arxiv.org/pdf/2005.00660.pdf)
- **Point of Contact:**[Sumithra Bhakthavatsalam](sumithrab@allenai.org)
                        [Chloe Anastasiades](chloea@allenai.org)
                        [Peter Clark](peterc@allenai.org)
                        Alternatively email_at info@allenai.org


### Dataset Summary

Dataset contains a large (3.5M+ sentence) knowledge base of *generic sentences*.  This is the first large resource to contain *naturally occurring* generic sentences, rich in high-quality, general, semantically complete statements. All GenericsKB sentences are annotated with their topical term, surrounding context (sentences), and a (learned) confidence. We also release GenericsKB-Best (1M+ sentences), containing the best-quality generics in GenericsKB augmented with selected, synthesized generics from WordNet and ConceptNet. This demonstrates that GenericsKB can be a useful resource for NLP applications, as well as providing data for linguistic studies of generics and their semantics.

### Supported Tasks and Leaderboards

[More Information Needed]

### Languages

The dataset is in English.

## Dataset Structure

### Data Instances

The GENERICSKB contains 3,433,000 sentences. GENERICS-KB-BEST comprises of GENERICSKB generics with a score > 0.234, augmented with short generics synthesized from three other resources for all the terms (generic categories) in GENERICSKB- BEST. GENERICSKB-BEST contains 1,020,868 generics (774,621 from GENERICSKB plus 246,247 synthesized).
SimpleWikipedia is a filtered scrape of SimpleWikipedia pages (simple.wikipedia.org). The Waterloo corpus is 280GB of English plain text, gathered by Charles Clarke (Univ. Waterloo) using a webcrawler in 2001 from .edu domains.

###### Sample SimpleWikipedia/ Waterloo config look like this
```
{'source_name': 'SimpleWikipedia', 'sentence': 'Sepsis happens when the bacterium enters the blood and make it form tiny clots.', 'sentences_before': [], 'sentences_after': [], 'concept_name': 'sepsis', 'quantifiers': {}, 'id': 'SimpleWikipedia--tmp-sw-rs1-with-bug-fixes-initialprocessing-inputs-articles-with-clean-sentences-jsonl-c27816b298e1e0b5326916ee4e2fd0f1603caa77-100-Bubonic-plague--Different-kinds-of-the-same-disease--Septicemic-plague-0-0-039fbe9c11adde4ff9a829376ca7e0ed-1560874903-47882-/Users/chloea/Documents/aristo/commonsense/kbs/simplewikipedia/commonsense-filtered-good-rs1.jsonl-1f33b1e84018a2b1bfdf446f9a6491568b5585da-1561086091.8220549', 'bert_score': 0.8396177887916565}
```
###### Sample instance for Generics KB datasets look like this:
```
{'source': 'Waterloo', 'term': 'aardvark', 'quantifier_frequency': '', 'quantifier_number': '', 'generic_sentence': 'Aardvarks are very gentle animals.', 'score': '0.36080607771873474'}
{'source': 'TupleKB', 'term': 'aardvark', 'quantifier_frequency': '', 'quantifier_number': '', 'generic_sentence': 'Aardvarks dig burrows.', 'score': '1.0'}
```
### Data Fields

The fields in GenericsKB-Best.tsv and GenericsKB.tsv are as follows:
- `SOURCE`: denotes the source of the generic
- `TERM`: denotes the category that is the topic of the generic.
- `GENERIC SENTENCE`: is the sentence itself.
- `SCORE`: Is the BERT-trained score, measuring the degree to which the generic represents a "useful, general truth" about the world (as judged by crowdworkers). Score ranges from 0 (worst) to 1 (best). Sentences with scores below 0.23 (corresponding to an "unsure" vote by crowdworkers) are in GenericsKB, but are not part of GenericsKB-Best due to their unreliability.
- `QUANTIFIER_FREQUENCY`:For generics with explicit quantifiers (all, most, etc.) the quantifier is listed - Frequency contains values  such as 'usually', 'often', 'frequently'
- `QUANTIFIER_NUMBER`: For generics with explicit quantifiers (all, most, etc.) with values such as 'all'|'any'|'most'|'much'|'some' etc...

The SimpleWiki/Waterloo generics from GenericsKB.tsv, but expanded to also include their surrounding context (before/after sentences). The Waterloo generics are the majority of GenericsKB. This zip file is 1.4GB expanding to 5.5GB.
There is a json representation for every generic statement in the Generics KB. The generic statement is stored under the `sentence` field within the `knowledge` object. There is also a `bert_score` associated with each sentence which is the BERT-based classifier's score for the 'genericness' of the statement. This score is meant to reflect how much generalized world knowledge/commonsense the statement captures vs only being contextually meaningful.
Detailed description of each of the fields:

- `source_name`: The name of the corpus the generic statement was picked from.
- `sentence`: The generic sentence.
- `sentences_before`: Provides context information surrounding the generic statement from the original corpus.Up to five sentences preceding the generic sentence in the original corpus.
- `sentences_after`: Up to five sentences following the generic sentence in the original corpus.
- `concept_name`: A concept that is the subject of the generic statement.
- `quantifiers`: The quantifiers for the key concept of the generic statement. There can be multiple quantifiers to allow for statements such as "All bats sometimes fly", where 'all' and 'sometimes' are both quantifiers reflecting number and frequency respectively. 
- `id`: Unique identifier for a generic statement in the kb.
- `bert_score`: Score for the generic statement from the BERT-based generics classifier.
<br>**Additional fields that apply only to SimpleWiki dataset**
    - `headings`: A breadcrumb of section/subsection headings from the top down to the location of the generic statement in the corpus. It applies to SimpleWikipedia which has a hierarchical structure.
    - `categories`:The listed categories under which the source article falls. Applies to SimpleWikipedia.


### Data Splits

There are no splits. 

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

Data was crawled. SimpleWikipedia is a filtered scrape of SimpleWikipedia pages (simple.wikipedia.org). The Waterloo corpus is 280GB of English plain text, gathered by Charles Clarke (Univ. Waterloo) using a webcrawler in 2001 from .edu domains.

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

Bert was used to decide whether the sentence is useful or not. Every sentence has a bert score.

#### Who are the annotators?

No annotations were made. 

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

The GenericsKB is available under the Creative Commons - Attribution 4.0 International - licence.

As an informal summary, from https://creativecommons.org/licenses/by/4.0/, you are free to:

	Share ― copy and redistribute the material in any medium or format
	Adapt ― remix, transform, and build upon the material for any purpose, even commercially.

under the following terms:

	Attribution ― You must give appropriate credit, provide a link to the license, and
		indicate if changes were made. You may do so in any reasonable manner,
		but not in any way that suggests the licensor endorses you or your use.
	No additional restrictions ― You may not apply legal terms or technological measures
		that legally restrict others from doing anything the license permits.

For details, see https://creativecommons.org/licenses/by/4.0/ or the or the included
file "Creative Commons ― Attribution 4.0 International ― CC BY 4.0.pdf" in this folder.

### Citation Information
```
@InProceedings{huggingface:dataset,
title = {GenericsKB: A Knowledge Base of Generic Statements},
authors={Sumithra Bhakthavatsalam, Chloe Anastasiades, Peter Clark},
year={2020},
publisher = {Allen Institute for AI},
}
```

### Contributions

Thanks to [@bpatidar](https://github.com/bpatidar) for adding this dataset.