File size: 12,298 Bytes
ea62e45 a549874 ea62e45 a549874 432a736 ea62e45 432a736 ea62e45 0d4088f 2b23700 530c33a cff62b4 0d4088f 4b387a0 cff62b4 4b387a0 eb76b79 cff62b4 eb76b79 cff62b4 4b387a0 cff62b4 4b387a0 830f2d1 4b387a0 830f2d1 4b387a0 66cf90a 4b387a0 66cf90a cff62b4 eb76b79 cff62b4 830f2d1 66cf90a ea62e45 2b23700 ea62e45 6ee4373 ea62e45 6ee4373 0d4088f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
---
annotations_creators:
- machine-generated
language_creators:
- found
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
- 1M<n<10M
source_datasets:
- original
task_categories:
- other
task_ids: []
paperswithcode_id: genericskb
pretty_name: GenericsKB
config_names:
- generics_kb
- generics_kb_best
- generics_kb_simplewiki
- generics_kb_waterloo
tags:
- knowledge-base
dataset_info:
- config_name: generics_kb
features:
- name: source
dtype: string
- name: term
dtype: string
- name: quantifier_frequency
dtype: string
- name: quantifier_number
dtype: string
- name: generic_sentence
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 348152086
num_examples: 3433000
download_size: 140633166
dataset_size: 348152086
- config_name: generics_kb_best
features:
- name: source
dtype: string
- name: term
dtype: string
- name: quantifier_frequency
dtype: string
- name: quantifier_number
dtype: string
- name: generic_sentence
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 99895659
num_examples: 1020868
download_size: 39007320
dataset_size: 99895659
- config_name: generics_kb_simplewiki
features:
- name: source_name
dtype: string
- name: sentence
dtype: string
- name: sentences_before
sequence: string
- name: sentences_after
sequence: string
- name: concept_name
dtype: string
- name: quantifiers
sequence: string
- name: id
dtype: string
- name: bert_score
dtype: float64
- name: headings
sequence: string
- name: categories
sequence: string
splits:
- name: train
num_bytes: 10039243
num_examples: 12765
download_size: 3895754
dataset_size: 10039243
- config_name: generics_kb_waterloo
features:
- name: source_name
dtype: string
- name: sentence
dtype: string
- name: sentences_before
sequence: string
- name: sentences_after
sequence: string
- name: concept_name
dtype: string
- name: quantifiers
sequence: string
- name: id
dtype: string
- name: bert_score
dtype: float64
splits:
- name: train
num_bytes: 4277200021
num_examples: 3666725
download_size: 2341097052
dataset_size: 4277200021
configs:
- config_name: generics_kb
data_files:
- split: train
path: generics_kb/train-*
- config_name: generics_kb_best
data_files:
- split: train
path: generics_kb_best/train-*
default: true
- config_name: generics_kb_simplewiki
data_files:
- split: train
path: generics_kb_simplewiki/train-*
- config_name: generics_kb_waterloo
data_files:
- split: train
path: generics_kb_waterloo/train-*
---
# Dataset Card for Generics KB
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Homepage](https://allenai.org/data/genericskb)
- **Repository:** [Repository](https://drive.google.com/drive/folders/1vqfVXhJXJWuiiXbUa4rZjOgQoJvwZUoT)
- **Paper:** [Paper](https://arxiv.org/pdf/2005.00660.pdf)
- **Point of Contact:**[Sumithra Bhakthavatsalam](sumithrab@allenai.org)
[Chloe Anastasiades](chloea@allenai.org)
[Peter Clark](peterc@allenai.org)
Alternatively email_at info@allenai.org
### Dataset Summary
Dataset contains a large (3.5M+ sentence) knowledge base of *generic sentences*. This is the first large resource to contain *naturally occurring* generic sentences, rich in high-quality, general, semantically complete statements. All GenericsKB sentences are annotated with their topical term, surrounding context (sentences), and a (learned) confidence. We also release GenericsKB-Best (1M+ sentences), containing the best-quality generics in GenericsKB augmented with selected, synthesized generics from WordNet and ConceptNet. This demonstrates that GenericsKB can be a useful resource for NLP applications, as well as providing data for linguistic studies of generics and their semantics.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
The dataset is in English.
## Dataset Structure
### Data Instances
The GENERICSKB contains 3,433,000 sentences. GENERICS-KB-BEST comprises of GENERICSKB generics with a score > 0.234, augmented with short generics synthesized from three other resources for all the terms (generic categories) in GENERICSKB- BEST. GENERICSKB-BEST contains 1,020,868 generics (774,621 from GENERICSKB plus 246,247 synthesized).
SimpleWikipedia is a filtered scrape of SimpleWikipedia pages (simple.wikipedia.org). The Waterloo corpus is 280GB of English plain text, gathered by Charles Clarke (Univ. Waterloo) using a webcrawler in 2001 from .edu domains.
###### Sample SimpleWikipedia/ Waterloo config look like this
```
{'source_name': 'SimpleWikipedia', 'sentence': 'Sepsis happens when the bacterium enters the blood and make it form tiny clots.', 'sentences_before': [], 'sentences_after': [], 'concept_name': 'sepsis', 'quantifiers': {}, 'id': 'SimpleWikipedia--tmp-sw-rs1-with-bug-fixes-initialprocessing-inputs-articles-with-clean-sentences-jsonl-c27816b298e1e0b5326916ee4e2fd0f1603caa77-100-Bubonic-plague--Different-kinds-of-the-same-disease--Septicemic-plague-0-0-039fbe9c11adde4ff9a829376ca7e0ed-1560874903-47882-/Users/chloea/Documents/aristo/commonsense/kbs/simplewikipedia/commonsense-filtered-good-rs1.jsonl-1f33b1e84018a2b1bfdf446f9a6491568b5585da-1561086091.8220549', 'bert_score': 0.8396177887916565}
```
###### Sample instance for Generics KB datasets look like this:
```
{'source': 'Waterloo', 'term': 'aardvark', 'quantifier_frequency': '', 'quantifier_number': '', 'generic_sentence': 'Aardvarks are very gentle animals.', 'score': '0.36080607771873474'}
{'source': 'TupleKB', 'term': 'aardvark', 'quantifier_frequency': '', 'quantifier_number': '', 'generic_sentence': 'Aardvarks dig burrows.', 'score': '1.0'}
```
### Data Fields
The fields in GenericsKB-Best.tsv and GenericsKB.tsv are as follows:
- `SOURCE`: denotes the source of the generic
- `TERM`: denotes the category that is the topic of the generic.
- `GENERIC SENTENCE`: is the sentence itself.
- `SCORE`: Is the BERT-trained score, measuring the degree to which the generic represents a "useful, general truth" about the world (as judged by crowdworkers). Score ranges from 0 (worst) to 1 (best). Sentences with scores below 0.23 (corresponding to an "unsure" vote by crowdworkers) are in GenericsKB, but are not part of GenericsKB-Best due to their unreliability.
- `QUANTIFIER_FREQUENCY`:For generics with explicit quantifiers (all, most, etc.) the quantifier is listed - Frequency contains values such as 'usually', 'often', 'frequently'
- `QUANTIFIER_NUMBER`: For generics with explicit quantifiers (all, most, etc.) with values such as 'all'|'any'|'most'|'much'|'some' etc...
The SimpleWiki/Waterloo generics from GenericsKB.tsv, but expanded to also include their surrounding context (before/after sentences). The Waterloo generics are the majority of GenericsKB. This zip file is 1.4GB expanding to 5.5GB.
There is a json representation for every generic statement in the Generics KB. The generic statement is stored under the `sentence` field within the `knowledge` object. There is also a `bert_score` associated with each sentence which is the BERT-based classifier's score for the 'genericness' of the statement. This score is meant to reflect how much generalized world knowledge/commonsense the statement captures vs only being contextually meaningful.
Detailed description of each of the fields:
- `source_name`: The name of the corpus the generic statement was picked from.
- `sentence`: The generic sentence.
- `sentences_before`: Provides context information surrounding the generic statement from the original corpus.Up to five sentences preceding the generic sentence in the original corpus.
- `sentences_after`: Up to five sentences following the generic sentence in the original corpus.
- `concept_name`: A concept that is the subject of the generic statement.
- `quantifiers`: The quantifiers for the key concept of the generic statement. There can be multiple quantifiers to allow for statements such as "All bats sometimes fly", where 'all' and 'sometimes' are both quantifiers reflecting number and frequency respectively.
- `id`: Unique identifier for a generic statement in the kb.
- `bert_score`: Score for the generic statement from the BERT-based generics classifier.
<br>**Additional fields that apply only to SimpleWiki dataset**
- `headings`: A breadcrumb of section/subsection headings from the top down to the location of the generic statement in the corpus. It applies to SimpleWikipedia which has a hierarchical structure.
- `categories`:The listed categories under which the source article falls. Applies to SimpleWikipedia.
### Data Splits
There are no splits.
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
Data was crawled. SimpleWikipedia is a filtered scrape of SimpleWikipedia pages (simple.wikipedia.org). The Waterloo corpus is 280GB of English plain text, gathered by Charles Clarke (Univ. Waterloo) using a webcrawler in 2001 from .edu domains.
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
Bert was used to decide whether the sentence is useful or not. Every sentence has a bert score.
#### Who are the annotators?
No annotations were made.
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
The GenericsKB is available under the Creative Commons - Attribution 4.0 International - licence.
As an informal summary, from https://creativecommons.org/licenses/by/4.0/, you are free to:
Share ― copy and redistribute the material in any medium or format
Adapt ― remix, transform, and build upon the material for any purpose, even commercially.
under the following terms:
Attribution ― You must give appropriate credit, provide a link to the license, and
indicate if changes were made. You may do so in any reasonable manner,
but not in any way that suggests the licensor endorses you or your use.
No additional restrictions ― You may not apply legal terms or technological measures
that legally restrict others from doing anything the license permits.
For details, see https://creativecommons.org/licenses/by/4.0/ or the or the included
file "Creative Commons ― Attribution 4.0 International ― CC BY 4.0.pdf" in this folder.
### Citation Information
```
@InProceedings{huggingface:dataset,
title = {GenericsKB: A Knowledge Base of Generic Statements},
authors={Sumithra Bhakthavatsalam, Chloe Anastasiades, Peter Clark},
year={2020},
publisher = {Allen Institute for AI},
}
```
### Contributions
Thanks to [@bpatidar](https://github.com/bpatidar) for adding this dataset. |