Datasets:

Modalities:
Text
Formats:
parquet
Languages:
German
Libraries:
Datasets
pandas
License:
albertvillanova HF staff commited on
Commit
eef942e
1 Parent(s): 0798aff

Convert dataset to Parquet (#4)

Browse files

- Convert dataset to Parquet (5f5bab000c693b25ddcd69567579741f08ab4d1a)
- Delete loading script (4f4f5e0e706f257f2a833cf9b6512af0cde82df3)

README.md CHANGED
@@ -37,13 +37,20 @@ dataset_info:
37
  '8': Kultur
38
  splits:
39
  - name: train
40
- num_bytes: 24418224
41
  num_examples: 9245
42
  - name: test
43
- num_bytes: 2756405
44
  num_examples: 1028
45
- download_size: 27160809
46
- dataset_size: 27174629
 
 
 
 
 
 
 
47
  ---
48
 
49
  # Dataset Card for 10k German News Articles Datasets
 
37
  '8': Kultur
38
  splits:
39
  - name: train
40
+ num_bytes: 24418220
41
  num_examples: 9245
42
  - name: test
43
+ num_bytes: 2756401
44
  num_examples: 1028
45
+ download_size: 17244356
46
+ dataset_size: 27174621
47
+ configs:
48
+ - config_name: default
49
+ data_files:
50
+ - split: train
51
+ path: data/train-*
52
+ - split: test
53
+ path: data/test-*
54
  ---
55
 
56
  # Dataset Card for 10k German News Articles Datasets
data/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e41f0625bb8d484e8520831e2c40c8dc22d7b2b42c72d6492e6d72dc5da7cdf6
3
+ size 1760077
data/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:922be5c13e771aea80df739f1d0831499448fc35417342c1c3fbebbd82ddc72a
3
+ size 15484279
gnad10.py DELETED
@@ -1,88 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """Ten Thousand German News Articles Dataset"""
16
-
17
-
18
- import csv
19
-
20
- import datasets
21
- from datasets.tasks import TextClassification
22
-
23
-
24
- _DESCRIPTION = """\
25
- This dataset is intended to advance topic classification for German texts. A classifier that is efffective in
26
- English may not be effective in German dataset because it has a higher inflection and longer compound words.
27
- The 10kGNAD dataset contains 10273 German news articles from an Austrian online newspaper categorized into
28
- 9 categories. Article titles and text are concatenated together and authors are removed to avoid a keyword-like
29
- classification on authors that write frequently about one category. This dataset can be used as a benchmark
30
- for German topic classification.
31
- """
32
-
33
- _HOMEPAGE = "https://tblock.github.io/10kGNAD/"
34
-
35
- _LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0"
36
-
37
- _TRAIN_DOWNLOAD_URL = "https://raw.githubusercontent.com/tblock/10kGNAD/master/train.csv"
38
- _TEST_DOWNLOAD_URL = "https://raw.githubusercontent.com/tblock/10kGNAD/master/test.csv"
39
-
40
-
41
- class Gnad10(datasets.GeneratorBasedBuilder):
42
- """10k German news articles for topic classification"""
43
-
44
- VERSION = datasets.Version("1.1.0")
45
-
46
- def _info(self):
47
- return datasets.DatasetInfo(
48
- description=_DESCRIPTION,
49
- features=datasets.Features(
50
- {
51
- "text": datasets.Value("string"),
52
- "label": datasets.features.ClassLabel(
53
- names=[
54
- "Web",
55
- "Panorama",
56
- "International",
57
- "Wirtschaft",
58
- "Sport",
59
- "Inland",
60
- "Etat",
61
- "Wissenschaft",
62
- "Kultur",
63
- ]
64
- ),
65
- }
66
- ),
67
- homepage="https://tblock.github.io/10kGNAD/",
68
- task_templates=[TextClassification(text_column="text", label_column="label")],
69
- )
70
-
71
- def _split_generators(self, dl_manager):
72
- """Returns SplitGenerators."""
73
-
74
- train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL)
75
- test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL)
76
- return [
77
- datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}),
78
- datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}),
79
- ]
80
-
81
- def _generate_examples(self, filepath):
82
- """Generate German news articles examples."""
83
-
84
- with open(filepath, encoding="utf-8") as csv_file:
85
- csv_reader = csv.reader(csv_file, delimiter=";", quotechar="'", quoting=csv.QUOTE_ALL)
86
- for id_, row in enumerate(csv_reader):
87
- label, text = row
88
- yield id_, {"text": text, "label": label}