Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Size:
10K - 100K
Tags:
offensive-language
License:
File size: 7,686 Bytes
094e4c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Offensive language identification in dravidian lanaguages dataset"""
from __future__ import absolute_import, division, print_function
import csv
import datasets
_HOMEPAGE = "https://competitions.codalab.org/competitions/27654#learn_the_details"
_CITATION = """\
@inproceedings{dravidianoffensive-eacl,
title={Findings of the Shared Task on {O}ffensive {L}anguage {I}dentification in {T}amil, {M}alayalam, and {K}annada},
author={Chakravarthi, Bharathi Raja and
Priyadharshini, Ruba and
Jose, Navya and
M, Anand Kumar and
Mandl, Thomas and
Kumaresan, Prasanna Kumar and
Ponnsamy, Rahul and
V,Hariharan and
Sherly, Elizabeth and
McCrae, John Philip },
booktitle = "Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages",
month = April,
year = "2021",
publisher = "Association for Computational Linguistics",
year={2021}
}
"""
_DESCRIPTION = """\
Offensive language identification in dravidian lanaguages dataset. The goal of this task is to identify offensive language content of the code-mixed dataset of comments/posts in Dravidian Languages ( (Tamil-English, Malayalam-English, and Kannada-English)) collected from social media.
"""
_LICENSE = "Creative Commons Attribution 4.0 International Licence"
_URLs = {
"tamil": {
"TRAIN_DOWNLOAD_URL": "https://drive.google.com/u/0/uc?id=15auwrFAlq52JJ61u7eSfnhT9rZtI5sjk&export=download",
"VALIDATION_DOWNLOAD_URL": "https://drive.google.com/u/0/uc?id=1Jme-Oftjm7OgfMNLKQs1mO_cnsQmznRI&export=download",
},
"malayalam": {
"TRAIN_DOWNLOAD_URL": "https://drive.google.com/u/0/uc?id=13JCCr-IjZK7uhbLXeufptr_AxvsKinVl&export=download",
"VALIDATION_DOWNLOAD_URL": "https://drive.google.com/u/0/uc?id=1J0msLpLoM6gmXkjC6DFeQ8CG_rrLvjnM&export=download",
},
"kannada": {
"TRAIN_DOWNLOAD_URL": "https://drive.google.com/u/0/uc?id=1BFYF05rx-DK9Eb5hgoIgd6EcB8zOI-zu&export=download",
"VALIDATION_DOWNLOAD_URL": "https://drive.google.com/u/0/uc?id=1V077dMQvscqpUmcWTcFHqRa_vTy-bQ4H&export=download",
},
}
class OffensevalDravidian(datasets.GeneratorBasedBuilder):
"""Offensive language identification in dravidian lanaguages dataset"""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="tamil", version=VERSION, description="This part of my dataset covers Tamil dataset"
),
datasets.BuilderConfig(
name="malayalam", version=VERSION, description="This part of my dataset covers Malayalam dataset"
),
datasets.BuilderConfig(
name="kannada", version=VERSION, description="This part of my dataset covers Kannada dataset"
),
]
def _info(self):
if self.config.name == "tamil": # This is the name of the configuration selected in BUILDER_CONFIGS above
features = datasets.Features(
{
"text": datasets.Value("string"),
"label": datasets.features.ClassLabel(
names=[
"Not_offensive",
"Offensive_Untargetede",
"Offensive_Targeted_Insult_Individual",
"Offensive_Targeted_Insult_Group",
"Offensive_Targeted_Insult_Other",
"not-Tamil",
]
),
}
)
elif self.config.name == "malayalam":
features = datasets.Features(
{
"text": datasets.Value("string"),
"label": datasets.features.ClassLabel(
names=[
"Not_offensive",
"Offensive_Untargetede",
"Offensive_Targeted_Insult_Individual",
"Offensive_Targeted_Insult_Group",
"Offensive_Targeted_Insult_Other",
"not-malayalam",
]
),
}
)
# else self.config.name == "kannada":
else:
features = datasets.Features(
{
"text": datasets.Value("string"),
"label": datasets.features.ClassLabel(
names=[
"Not_offensive",
"Offensive_Untargetede",
"Offensive_Targeted_Insult_Individual",
"Offensive_Targeted_Insult_Group",
"Offensive_Targeted_Insult_Other",
"not-Kannada",
]
),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
my_urls = _URLs[self.config.name]
train_path = dl_manager.download_and_extract(my_urls["TRAIN_DOWNLOAD_URL"])
validation_path = dl_manager.download_and_extract(my_urls["VALIDATION_DOWNLOAD_URL"])
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": train_path,
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": validation_path,
"split": "validation",
},
),
]
def _generate_examples(self, filepath, split):
"""Generate Offenseval_dravidian examples."""
with open(filepath, encoding="utf-8") as csv_file:
csv_reader = csv.reader(
csv_file, quotechar='"', delimiter="\t", quoting=csv.QUOTE_ALL, skipinitialspace=False
)
for id_, row in enumerate(csv_reader):
if self.config.name == "kannada":
text, label = row
else:
text, label, dummy = row
yield id_, {"text": text, "label": label}
|