Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Size:
10K - 100K
Tags:
offensive-language
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Offensive language identification in dravidian lanaguages dataset""" | |
import csv | |
import datasets | |
_HOMEPAGE = "https://competitions.codalab.org/competitions/27654#learn_the_details" | |
_CITATION = """\ | |
@inproceedings{dravidianoffensive-eacl, | |
title={Findings of the Shared Task on {O}ffensive {L}anguage {I}dentification in {T}amil, {M}alayalam, and {K}annada}, | |
author={Chakravarthi, Bharathi Raja and | |
Priyadharshini, Ruba and | |
Jose, Navya and | |
M, Anand Kumar and | |
Mandl, Thomas and | |
Kumaresan, Prasanna Kumar and | |
Ponnsamy, Rahul and | |
V,Hariharan and | |
Sherly, Elizabeth and | |
McCrae, John Philip }, | |
booktitle = "Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages", | |
month = April, | |
year = "2021", | |
publisher = "Association for Computational Linguistics", | |
year={2021} | |
} | |
""" | |
_DESCRIPTION = """\ | |
Offensive language identification in dravidian lanaguages dataset. The goal of this task is to identify offensive language content of the code-mixed dataset of comments/posts in Dravidian Languages ( (Tamil-English, Malayalam-English, and Kannada-English)) collected from social media. | |
""" | |
_LICENSE = "Creative Commons Attribution 4.0 International Licence" | |
_URLs = { | |
"tamil": { | |
"TRAIN_DOWNLOAD_URL": "https://drive.google.com/u/0/uc?id=15auwrFAlq52JJ61u7eSfnhT9rZtI5sjk&export=download", | |
"VALIDATION_DOWNLOAD_URL": "https://drive.google.com/u/0/uc?id=1Jme-Oftjm7OgfMNLKQs1mO_cnsQmznRI&export=download", | |
}, | |
"malayalam": { | |
"TRAIN_DOWNLOAD_URL": "https://drive.google.com/u/0/uc?id=13JCCr-IjZK7uhbLXeufptr_AxvsKinVl&export=download", | |
"VALIDATION_DOWNLOAD_URL": "https://drive.google.com/u/0/uc?id=1J0msLpLoM6gmXkjC6DFeQ8CG_rrLvjnM&export=download", | |
}, | |
"kannada": { | |
"TRAIN_DOWNLOAD_URL": "https://drive.google.com/u/0/uc?id=1BFYF05rx-DK9Eb5hgoIgd6EcB8zOI-zu&export=download", | |
"VALIDATION_DOWNLOAD_URL": "https://drive.google.com/u/0/uc?id=1V077dMQvscqpUmcWTcFHqRa_vTy-bQ4H&export=download", | |
}, | |
} | |
class OffensevalDravidian(datasets.GeneratorBasedBuilder): | |
"""Offensive language identification in dravidian lanaguages dataset""" | |
VERSION = datasets.Version("1.0.0") | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig( | |
name="tamil", version=VERSION, description="This part of my dataset covers Tamil dataset" | |
), | |
datasets.BuilderConfig( | |
name="malayalam", version=VERSION, description="This part of my dataset covers Malayalam dataset" | |
), | |
datasets.BuilderConfig( | |
name="kannada", version=VERSION, description="This part of my dataset covers Kannada dataset" | |
), | |
] | |
def _info(self): | |
if self.config.name == "tamil": # This is the name of the configuration selected in BUILDER_CONFIGS above | |
features = datasets.Features( | |
{ | |
"text": datasets.Value("string"), | |
"label": datasets.features.ClassLabel( | |
names=[ | |
"Not_offensive", | |
"Offensive_Untargetede", | |
"Offensive_Targeted_Insult_Individual", | |
"Offensive_Targeted_Insult_Group", | |
"Offensive_Targeted_Insult_Other", | |
"not-Tamil", | |
] | |
), | |
} | |
) | |
elif self.config.name == "malayalam": | |
features = datasets.Features( | |
{ | |
"text": datasets.Value("string"), | |
"label": datasets.features.ClassLabel( | |
names=[ | |
"Not_offensive", | |
"Offensive_Untargetede", | |
"Offensive_Targeted_Insult_Individual", | |
"Offensive_Targeted_Insult_Group", | |
"Offensive_Targeted_Insult_Other", | |
"not-malayalam", | |
] | |
), | |
} | |
) | |
# else self.config.name == "kannada": | |
else: | |
features = datasets.Features( | |
{ | |
"text": datasets.Value("string"), | |
"label": datasets.features.ClassLabel( | |
names=[ | |
"Not_offensive", | |
"Offensive_Untargetede", | |
"Offensive_Targeted_Insult_Individual", | |
"Offensive_Targeted_Insult_Group", | |
"Offensive_Targeted_Insult_Other", | |
"not-Kannada", | |
] | |
), | |
} | |
) | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# This defines the different columns of the dataset and their types | |
features=features, # Here we define them above because they are different between the two configurations | |
# If there's a common (input, target) tuple from the features, | |
# specify them here. They'll be used if as_supervised=True in | |
# builder.as_dataset. | |
supervised_keys=None, | |
# Homepage of the dataset for documentation | |
homepage=_HOMEPAGE, | |
# License for the dataset if available | |
license=_LICENSE, | |
# Citation for the dataset | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
my_urls = _URLs[self.config.name] | |
train_path = dl_manager.download_and_extract(my_urls["TRAIN_DOWNLOAD_URL"]) | |
validation_path = dl_manager.download_and_extract(my_urls["VALIDATION_DOWNLOAD_URL"]) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"filepath": train_path, | |
"split": "train", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"filepath": validation_path, | |
"split": "validation", | |
}, | |
), | |
] | |
def _generate_examples(self, filepath, split): | |
"""Generate Offenseval_dravidian examples.""" | |
with open(filepath, encoding="utf-8") as csv_file: | |
csv_reader = csv.reader( | |
csv_file, quotechar='"', delimiter="\t", quoting=csv.QUOTE_ALL, skipinitialspace=False | |
) | |
for id_, row in enumerate(csv_reader): | |
if self.config.name == "kannada": | |
text, label = row | |
else: | |
text, label, dummy = row | |
yield id_, {"text": text, "label": label} | |