parquet-converter commited on
Commit
f91a622
1 Parent(s): f2e66a6

Update parquet files

Browse files
.gitattributes DELETED
@@ -1,27 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bin.* filter=lfs diff=lfs merge=lfs -text
5
- *.bz2 filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.model filter=lfs diff=lfs merge=lfs -text
12
- *.msgpack filter=lfs diff=lfs merge=lfs -text
13
- *.onnx filter=lfs diff=lfs merge=lfs -text
14
- *.ot filter=lfs diff=lfs merge=lfs -text
15
- *.parquet filter=lfs diff=lfs merge=lfs -text
16
- *.pb filter=lfs diff=lfs merge=lfs -text
17
- *.pt filter=lfs diff=lfs merge=lfs -text
18
- *.pth filter=lfs diff=lfs merge=lfs -text
19
- *.rar filter=lfs diff=lfs merge=lfs -text
20
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
- *.tar.* filter=lfs diff=lfs merge=lfs -text
22
- *.tflite filter=lfs diff=lfs merge=lfs -text
23
- *.tgz filter=lfs diff=lfs merge=lfs -text
24
- *.xz filter=lfs diff=lfs merge=lfs -text
25
- *.zip filter=lfs diff=lfs merge=lfs -text
26
- *.zstandard filter=lfs diff=lfs merge=lfs -text
27
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md DELETED
@@ -1,350 +0,0 @@
1
- ---
2
- annotations_creators:
3
- - expert-generated
4
- language_creators:
5
- - crowdsourced
6
- language:
7
- - en
8
- - kn
9
- - ml
10
- - ta
11
- license:
12
- - cc-by-4.0
13
- multilinguality:
14
- - multilingual
15
- size_categories:
16
- - 10K<n<100K
17
- - 1K<n<10K
18
- source_datasets:
19
- - original
20
- task_categories:
21
- - text-classification
22
- task_ids: []
23
- paperswithcode_id: null
24
- pretty_name: Offenseval Dravidian
25
- configs:
26
- - kannada
27
- - malayalam
28
- - tamil
29
- tags:
30
- - offensive-language
31
- dataset_info:
32
- - config_name: tamil
33
- features:
34
- - name: text
35
- dtype: string
36
- - name: label
37
- dtype:
38
- class_label:
39
- names:
40
- 0: Not_offensive
41
- 1: Offensive_Untargetede
42
- 2: Offensive_Targeted_Insult_Individual
43
- 3: Offensive_Targeted_Insult_Group
44
- 4: Offensive_Targeted_Insult_Other
45
- 5: not-Tamil
46
- splits:
47
- - name: train
48
- num_bytes: 4214801
49
- num_examples: 35139
50
- - name: validation
51
- num_bytes: 526108
52
- num_examples: 4388
53
- download_size: 5040217
54
- dataset_size: 4740909
55
- - config_name: malayalam
56
- features:
57
- - name: text
58
- dtype: string
59
- - name: label
60
- dtype:
61
- class_label:
62
- names:
63
- 0: Not_offensive
64
- 1: Offensive_Untargetede
65
- 2: Offensive_Targeted_Insult_Individual
66
- 3: Offensive_Targeted_Insult_Group
67
- 4: Offensive_Targeted_Insult_Other
68
- 5: not-malayalam
69
- splits:
70
- - name: train
71
- num_bytes: 1944857
72
- num_examples: 16010
73
- - name: validation
74
- num_bytes: 249364
75
- num_examples: 1999
76
- download_size: 2276736
77
- dataset_size: 2194221
78
- - config_name: kannada
79
- features:
80
- - name: text
81
- dtype: string
82
- - name: label
83
- dtype:
84
- class_label:
85
- names:
86
- 0: Not_offensive
87
- 1: Offensive_Untargetede
88
- 2: Offensive_Targeted_Insult_Individual
89
- 3: Offensive_Targeted_Insult_Group
90
- 4: Offensive_Targeted_Insult_Other
91
- 5: not-Kannada
92
- splits:
93
- - name: train
94
- num_bytes: 567119
95
- num_examples: 6217
96
- - name: validation
97
- num_bytes: 70147
98
- num_examples: 777
99
- download_size: 678727
100
- dataset_size: 637266
101
- ---
102
-
103
- # Dataset Card for Offenseval Dravidian
104
-
105
- ## Table of Contents
106
- - [Dataset Description](#dataset-description)
107
- - [Dataset Summary](#dataset-summary)
108
- - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
109
- - [Languages](#languages)
110
- - [Dataset Structure](#dataset-structure)
111
- - [Data Instances](#data-instances)
112
- - [Data Fields](#data-fields)
113
- - [Data Splits](#data-splits)
114
- - [Dataset Creation](#dataset-creation)
115
- - [Curation Rationale](#curation-rationale)
116
- - [Source Data](#source-data)
117
- - [Annotations](#annotations)
118
- - [Personal and Sensitive Information](#personal-and-sensitive-information)
119
- - [Considerations for Using the Data](#considerations-for-using-the-data)
120
- - [Social Impact of Dataset](#social-impact-of-dataset)
121
- - [Discussion of Biases](#discussion-of-biases)
122
- - [Other Known Limitations](#other-known-limitations)
123
- - [Additional Information](#additional-information)
124
- - [Dataset Curators](#dataset-curators)
125
- - [Licensing Information](#licensing-information)
126
- - [Citation Information](#citation-information)
127
- - [Contributions](#contributions)
128
-
129
- ## Dataset Description
130
-
131
- - **Homepage:** https://competitions.codalab.org/competitions/27654#learn_the_details
132
- - **Repository:** https://competitions.codalab.org/competitions/27654#participate-get_data
133
- - **Paper:** Findings of the Shared Task on {O}ffensive {L}anguage {I}dentification in {T}amil, {M}alayalam, and {K}annada
134
- - **Leaderboard:** https://competitions.codalab.org/competitions/27654#results
135
- - **Point of Contact:** [Bharathi Raja Chakravarthi](mailto:bharathiraja.akr@gmail.com)
136
-
137
- ### Dataset Summary
138
-
139
- Offensive language identification is classification task in natural language processing (NLP) where the aim is to moderate and minimise offensive content in social media. It has been an active area of research in both academia and industry for the past two decades. There is an increasing demand for offensive language identification on social media texts which are largely code-mixed. Code-mixing is a prevalent phenomenon in a multilingual community and the code-mixed texts are sometimes written in non-native scripts. Systems trained on monolingual data fail on code-mixed data due to the complexity of code-switching at different linguistic levels in the text. This shared task presents a new gold standard corpus for offensive language identification of code-mixed text in Dravidian languages (Tamil-English, Malayalam-English, and Kannada-English).
140
-
141
- ### Supported Tasks and Leaderboards
142
-
143
- The goal of this task is to identify offensive language content of the code-mixed dataset of comments/posts in Dravidian Languages ( (Tamil-English, Malayalam-English, and Kannada-English)) collected from social media. The comment/post may contain more than one sentence but the average sentence length of the corpora is 1. Each comment/post is annotated at the comment/post level. This dataset also has class imbalance problems depicting real-world scenarios.
144
-
145
- ### Languages
146
-
147
- Code-mixed text in Dravidian languages (Tamil-English, Malayalam-English, and Kannada-English).
148
-
149
- ## Dataset Structure
150
-
151
- ### Data Instances
152
-
153
- An example from the Tamil dataset looks as follows:
154
-
155
- | text | label |
156
- | :------ | :----- |
157
- | படம் கண்டிப்பாக வெற்றி பெற வேண்டும் செம்ம vara level | Not_offensive |
158
- | Avasara patutiya editor uhh antha bullet sequence aa nee soliruka kudathu, athu sollama iruntha movie ku konjam support aa surprise element aa irunthurukum | Not_offensive |
159
-
160
- An example from the Malayalam dataset looks as follows:
161
-
162
- | text | label |
163
- | :------ | :----- |
164
- | ഷൈലോക്ക് ന്റെ നല്ല ടീസർ ആയിട്ട് പോലും ട്രോളി നടന്ന ലാലേട്ടൻ ഫാൻസിന് കിട്ടിയൊരു നല്ലൊരു തിരിച്ചടി തന്നെ ആയിരിന്നു ബിഗ് ബ്രദർ ന്റെ ട്രെയ്‌ലർ | Not_offensive |
165
- | Marana mass Ekka kku kodukku oru | Not_offensive |
166
-
167
-
168
- An example from the Kannada dataset looks as follows:
169
-
170
- | text | label |
171
- | :------ | :----- |
172
- | ನಿಜವಾಗಿಯೂ ಅದ್ಭುತ heartly heltidini... plz avrigella namma nimmellara supprt beku | Not_offensive |
173
- | Next song gu kuda alru andre evaga yar comment madidera alla alrru like madi share madi nam industry na next level ge togond hogaona. | Not_offensive |
174
-
175
-
176
- ### Data Fields
177
-
178
- Tamil
179
- - `text`: Tamil-English code mixed comment.
180
- - `label`: integer from 0 to 5 that corresponds to these values: "Not_offensive", "Offensive_Untargetede", "Offensive_Targeted_Insult_Individual", "Offensive_Targeted_Insult_Group", "Offensive_Targeted_Insult_Other", "not-Tamil"
181
-
182
- Malayalam
183
- - `text`: Malayalam-English code mixed comment.
184
- - `label`: integer from 0 to 5 that corresponds to these values: "Not_offensive", "Offensive_Untargetede", "Offensive_Targeted_Insult_Individual", "Offensive_Targeted_Insult_Group", "Offensive_Targeted_Insult_Other", "not-malayalam"
185
-
186
- Kannada
187
- - `text`: Kannada-English code mixed comment.
188
- - `label`: integer from 0 to 5 that corresponds to these values: "Not_offensive", "Offensive_Untargetede", "Offensive_Targeted_Insult_Individual", "Offensive_Targeted_Insult_Group", "Offensive_Targeted_Insult_Other", "not-Kannada"
189
-
190
-
191
- ### Data Splits
192
-
193
- | | train | validation |
194
- |-----------|------:|-----------:|
195
- | Tamil | 35139 | 4388 |
196
- | Malayalam | 16010 | 1999 |
197
- | Kannada | 6217 | 777 |
198
-
199
- ## Dataset Creation
200
-
201
- ### Curation Rationale
202
-
203
- There is an increasing demand for offensive language identification on social media texts which are largely code-mixed. Code-mixing is a prevalent phenomenon in a multilingual community and the code-mixed texts are sometimes written in non-native scripts. Systems trained on monolingual data fail on code-mixed data due to the complexity of code-switching at different linguistic levels in the text.
204
-
205
- ### Source Data
206
-
207
- #### Initial Data Collection and Normalization
208
-
209
- [Needs More Information]
210
-
211
- #### Who are the source language producers?
212
-
213
- Youtube users
214
-
215
- ### Annotations
216
-
217
- #### Annotation process
218
-
219
- [Needs More Information]
220
-
221
- #### Who are the annotators?
222
-
223
- [Needs More Information]
224
-
225
- ### Personal and Sensitive Information
226
-
227
- [Needs More Information]
228
-
229
- ## Considerations for Using the Data
230
-
231
- ### Social Impact of Dataset
232
-
233
- [Needs More Information]
234
-
235
- ### Discussion of Biases
236
-
237
- [Needs More Information]
238
-
239
- ### Other Known Limitations
240
-
241
- [Needs More Information]
242
-
243
- ## Additional Information
244
-
245
- ### Dataset Curators
246
-
247
- [Needs More Information]
248
-
249
- ### Licensing Information
250
-
251
- This work is licensed under a [Creative Commons Attribution 4.0 International Licence](http://creativecommons.org/licenses/by/4.0/.)
252
-
253
- ### Citation Information
254
-
255
-
256
- ```
257
- @article{chakravarthi-etal-2021-lre,
258
- title = "DravidianCodeMix: Sentiment Analysis and Offensive Language Identification Dataset for Dravidian Languages in Code-Mixed Text",
259
- author = "Chakravarthi, Bharathi Raja and
260
- Priyadharshini, Ruba and
261
- Muralidaran, Vigneshwaran and
262
- Jose, Navya and
263
- Suryawanshi, Shardul and
264
- Sherly, Elizabeth and
265
- McCrae, John P",
266
- journal={Language Resources and Evaluation},
267
- publisher={Springer}
268
- }
269
-
270
- ```
271
- ```
272
- @inproceedings{dravidianoffensive-eacl,
273
- title={Findings of the Shared Task on {O}ffensive {L}anguage {I}dentification in {T}amil, {M}alayalam, and {K}annada},
274
- author={Chakravarthi, Bharathi Raja and
275
- Priyadharshini, Ruba and
276
- Jose, Navya and
277
- M, Anand Kumar and
278
- Mandl, Thomas and
279
- Kumaresan, Prasanna Kumar and
280
- Ponnsamy, Rahul and
281
- V,Hariharan and
282
- Sherly, Elizabeth and
283
- McCrae, John Philip },
284
- booktitle = "Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages",
285
- month = April,
286
- year = "2021",
287
- publisher = "Association for Computational Linguistics",
288
- year={2021}
289
- }
290
- ```
291
- ```
292
- @inproceedings{hande-etal-2020-kancmd,
293
- title = "{K}an{CMD}: {K}annada {C}ode{M}ixed Dataset for Sentiment Analysis and Offensive Language Detection",
294
- author = "Hande, Adeep and
295
- Priyadharshini, Ruba and
296
- Chakravarthi, Bharathi Raja",
297
- booktitle = "Proceedings of the Third Workshop on Computational Modeling of People's Opinions, Personality, and Emotion's in Social Media",
298
- month = dec,
299
- year = "2020",
300
- address = "Barcelona, Spain (Online)",
301
- publisher = "Association for Computational Linguistics",
302
- url = "https://www.aclweb.org/anthology/2020.peoples-1.6",
303
- pages = "54--63",
304
- abstract = "We introduce Kannada CodeMixed Dataset (KanCMD), a multi-task learning dataset for sentiment analysis and offensive language identification. The KanCMD dataset highlights two real-world issues from the social media text. First, it contains actual comments in code mixed text posted by users on YouTube social media, rather than in monolingual text from the textbook. Second, it has been annotated for two tasks, namely sentiment analysis and offensive language detection for under-resourced Kannada language. Hence, KanCMD is meant to stimulate research in under-resourced Kannada language on real-world code-mixed social media text and multi-task learning. KanCMD was obtained by crawling the YouTube, and a minimum of three annotators annotates each comment. We release KanCMD 7,671 comments for multitask learning research purpose.",
305
- }
306
- ```
307
-
308
- ```
309
- @inproceedings{chakravarthi-etal-2020-corpus,
310
- title = "Corpus Creation for Sentiment Analysis in Code-Mixed {T}amil-{E}nglish Text",
311
- author = "Chakravarthi, Bharathi Raja and
312
- Muralidaran, Vigneshwaran and
313
- Priyadharshini, Ruba and
314
- McCrae, John Philip",
315
- booktitle = "Proceedings of the 1st Joint Workshop on Spoken Language Technologies for Under-resourced languages (SLTU) and Collaboration and Computing for Under-Resourced Languages (CCURL)",
316
- month = may,
317
- year = "2020",
318
- address = "Marseille, France",
319
- publisher = "European Language Resources association",
320
- url = "https://www.aclweb.org/anthology/2020.sltu-1.28",
321
- pages = "202--210",
322
- abstract = "Understanding the sentiment of a comment from a video or an image is an essential task in many applications. Sentiment analysis of a text can be useful for various decision-making processes. One such application is to analyse the popular sentiments of videos on social media based on viewer comments. However, comments from social media do not follow strict rules of grammar, and they contain mixing of more than one language, often written in non-native scripts. Non-availability of annotated code-mixed data for a low-resourced language like Tamil also adds difficulty to this problem. To overcome this, we created a gold standard Tamil-English code-switched, sentiment-annotated corpus containing 15,744 comment posts from YouTube. In this paper, we describe the process of creating the corpus and assigning polarities. We present inter-annotator agreement and show the results of sentiment analysis trained on this corpus as a benchmark.",
323
- language = "English",
324
- ISBN = "979-10-95546-35-1",
325
- }
326
- ```
327
-
328
- ```
329
- @inproceedings{chakravarthi-etal-2020-sentiment,
330
- title = "A Sentiment Analysis Dataset for Code-Mixed {M}alayalam-{E}nglish",
331
- author = "Chakravarthi, Bharathi Raja and
332
- Jose, Navya and
333
- Suryawanshi, Shardul and
334
- Sherly, Elizabeth and
335
- McCrae, John Philip",
336
- booktitle = "Proceedings of the 1st Joint Workshop on Spoken Language Technologies for Under-resourced languages (SLTU) and Collaboration and Computing for Under-Resourced Languages (CCURL)",
337
- month = may,
338
- year = "2020",
339
- address = "Marseille, France",
340
- publisher = "European Language Resources association",
341
- url = "https://www.aclweb.org/anthology/2020.sltu-1.25",
342
- pages = "177--184",
343
- abstract = "There is an increasing demand for sentiment analysis of text from social media which are mostly code-mixed. Systems trained on monolingual data fail for code-mixed data due to the complexity of mixing at different levels of the text. However, very few resources are available for code-mixed data to create models specific for this data. Although much research in multilingual and cross-lingual sentiment analysis has used semi-supervised or unsupervised methods, supervised methods still performs better. Only a few datasets for popular languages such as English-Spanish, English-Hindi, and English-Chinese are available. There are no resources available for Malayalam-English code-mixed data. This paper presents a new gold standard corpus for sentiment analysis of code-mixed text in Malayalam-English annotated by voluntary annotators. This gold standard corpus obtained a Krippendorff{'}s alpha above 0.8 for the dataset. We use this new corpus to provide the benchmark for sentiment analysis in Malayalam-English code-mixed texts.",
344
- language = "English",
345
- ISBN = "979-10-95546-35-1",
346
- }
347
- ```
348
- ### Contributions
349
-
350
- Thanks to [@jamespaultg](https://github.com/jamespaultg) for adding this dataset.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"tamil": {"description": "Offensive language identification in dravidian lanaguages dataset. The goal of this task is to identify offensive language content of the code-mixed dataset of comments/posts in Dravidian Languages ( (Tamil-English, Malayalam-English, and Kannada-English)) collected from social media.\n", "citation": "@inproceedings{dravidianoffensive-eacl,\ntitle={Findings of the Shared Task on {O}ffensive {L}anguage {I}dentification in {T}amil, {M}alayalam, and {K}annada},\nauthor={Chakravarthi, Bharathi Raja and\nPriyadharshini, Ruba and\nJose, Navya and\nM, Anand Kumar and\nMandl, Thomas and\nKumaresan, Prasanna Kumar and\nPonnsamy, Rahul and\nV,Hariharan and\nSherly, Elizabeth and\nMcCrae, John Philip },\nbooktitle = \"Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages\",\nmonth = April,\nyear = \"2021\",\npublisher = \"Association for Computational Linguistics\",\nyear={2021}\n}\n", "homepage": "https://competitions.codalab.org/competitions/27654#learn_the_details", "license": "Creative Commons Attribution 4.0 International Licence", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 6, "names": ["Not_offensive", "Offensive_Untargetede", "Offensive_Targeted_Insult_Individual", "Offensive_Targeted_Insult_Group", "Offensive_Targeted_Insult_Other", "not-Tamil"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "offenseval_dravidian", "config_name": "tamil", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 4214801, "num_examples": 35139, "dataset_name": "offenseval_dravidian"}, "validation": {"name": "validation", "num_bytes": 526108, "num_examples": 4388, "dataset_name": "offenseval_dravidian"}}, "download_checksums": {"https://drive.google.com/u/0/uc?id=15auwrFAlq52JJ61u7eSfnhT9rZtI5sjk&export=download": {"num_bytes": 4480860, "checksum": "dd76f6cf48c49143ac0f83d901a0ae9d3f865c8ea37668ae2823f560585440d1"}, "https://drive.google.com/u/0/uc?id=1Jme-Oftjm7OgfMNLKQs1mO_cnsQmznRI&export=download": {"num_bytes": 559357, "checksum": "d533cb5a9e5c3620d709630f554a9d1ce1c9ce27e1cbcd0c7b5ac31857dbb63e"}}, "download_size": 5040217, "post_processing_size": null, "dataset_size": 4740909, "size_in_bytes": 9781126}, "malayalam": {"description": "Offensive language identification in dravidian lanaguages dataset. The goal of this task is to identify offensive language content of the code-mixed dataset of comments/posts in Dravidian Languages ( (Tamil-English, Malayalam-English, and Kannada-English)) collected from social media.\n", "citation": "@inproceedings{dravidianoffensive-eacl,\ntitle={Findings of the Shared Task on {O}ffensive {L}anguage {I}dentification in {T}amil, {M}alayalam, and {K}annada},\nauthor={Chakravarthi, Bharathi Raja and\nPriyadharshini, Ruba and\nJose, Navya and\nM, Anand Kumar and\nMandl, Thomas and\nKumaresan, Prasanna Kumar and\nPonnsamy, Rahul and\nV,Hariharan and\nSherly, Elizabeth and\nMcCrae, John Philip },\nbooktitle = \"Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages\",\nmonth = April,\nyear = \"2021\",\npublisher = \"Association for Computational Linguistics\",\nyear={2021}\n}\n", "homepage": "https://competitions.codalab.org/competitions/27654#learn_the_details", "license": "Creative Commons Attribution 4.0 International Licence", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 6, "names": ["Not_offensive", "Offensive_Untargetede", "Offensive_Targeted_Insult_Individual", "Offensive_Targeted_Insult_Group", "Offensive_Targeted_Insult_Other", "not-malayalam"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "offenseval_dravidian", "config_name": "malayalam", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1944857, "num_examples": 16010, "dataset_name": "offenseval_dravidian"}, "validation": {"name": "validation", "num_bytes": 249364, "num_examples": 1999, "dataset_name": "offenseval_dravidian"}}, "download_checksums": {"https://drive.google.com/u/0/uc?id=13JCCr-IjZK7uhbLXeufptr_AxvsKinVl&export=download": {"num_bytes": 2018434, "checksum": "f056fec3d5032bc4fa2a103926e68ad31b9197bfdbd7d95f1a084d828f64eb5b"}, "https://drive.google.com/u/0/uc?id=1J0msLpLoM6gmXkjC6DFeQ8CG_rrLvjnM&export=download": {"num_bytes": 258302, "checksum": "43241953aaa4ac72e6b448d89a39983359d5ca323863985fd77341683a22184e"}}, "download_size": 2276736, "post_processing_size": null, "dataset_size": 2194221, "size_in_bytes": 4470957}, "kannada": {"description": "Offensive language identification in dravidian lanaguages dataset. The goal of this task is to identify offensive language content of the code-mixed dataset of comments/posts in Dravidian Languages ( (Tamil-English, Malayalam-English, and Kannada-English)) collected from social media.\n", "citation": "@inproceedings{dravidianoffensive-eacl,\ntitle={Findings of the Shared Task on {O}ffensive {L}anguage {I}dentification in {T}amil, {M}alayalam, and {K}annada},\nauthor={Chakravarthi, Bharathi Raja and\nPriyadharshini, Ruba and\nJose, Navya and\nM, Anand Kumar and\nMandl, Thomas and\nKumaresan, Prasanna Kumar and\nPonnsamy, Rahul and\nV,Hariharan and\nSherly, Elizabeth and\nMcCrae, John Philip },\nbooktitle = \"Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages\",\nmonth = April,\nyear = \"2021\",\npublisher = \"Association for Computational Linguistics\",\nyear={2021}\n}\n", "homepage": "https://competitions.codalab.org/competitions/27654#learn_the_details", "license": "Creative Commons Attribution 4.0 International Licence", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 6, "names": ["Not_offensive", "Offensive_Untargetede", "Offensive_Targeted_Insult_Individual", "Offensive_Targeted_Insult_Group", "Offensive_Targeted_Insult_Other", "not-Kannada"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "offenseval_dravidian", "config_name": "kannada", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 567119, "num_examples": 6217, "dataset_name": "offenseval_dravidian"}, "validation": {"name": "validation", "num_bytes": 70147, "num_examples": 777, "dataset_name": "offenseval_dravidian"}}, "download_checksums": {"https://drive.google.com/u/0/uc?id=1BFYF05rx-DK9Eb5hgoIgd6EcB8zOI-zu&export=download": {"num_bytes": 603755, "checksum": "a3b8f0f17bfb1cfd8600ecd37b5d5ea591ba788c0bb848913e76ae3311d1110f"}, "https://drive.google.com/u/0/uc?id=1V077dMQvscqpUmcWTcFHqRa_vTy-bQ4H&export=download": {"num_bytes": 74972, "checksum": "b22e47d835e30f7ed45f8e3a262cb72d3cbffdee9c324c135e83f6e1b09b7798"}}, "download_size": 678727, "post_processing_size": null, "dataset_size": 637266, "size_in_bytes": 1315993}}
 
 
kannada/offenseval_dravidian-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:847cb909b143a9fde25948627b3fe6551ba9df9055c441f7a7f04c6aa5e97809
3
+ size 323735
kannada/offenseval_dravidian-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a042c02764f2a613dfeaa4980af29b80bfe9ce40ed18c0a492f2e3bc43903d4
3
+ size 40373
malayalam/offenseval_dravidian-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f03a4d210e3570cb6d78f4bf2d46c7e49ca3ba341db302a60f6976f0d29a8a97
3
+ size 1071266
malayalam/offenseval_dravidian-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:adeae98d907f73b7c2e5c047bec9f837dbdba7396b9e695c54ee28b7c51461e1
3
+ size 135884
offenseval_dravidian.py DELETED
@@ -1,196 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """Offensive language identification in dravidian lanaguages dataset"""
16
-
17
-
18
- import csv
19
-
20
- import datasets
21
-
22
-
23
- _HOMEPAGE = "https://competitions.codalab.org/competitions/27654#learn_the_details"
24
-
25
-
26
- _CITATION = """\
27
- @inproceedings{dravidianoffensive-eacl,
28
- title={Findings of the Shared Task on {O}ffensive {L}anguage {I}dentification in {T}amil, {M}alayalam, and {K}annada},
29
- author={Chakravarthi, Bharathi Raja and
30
- Priyadharshini, Ruba and
31
- Jose, Navya and
32
- M, Anand Kumar and
33
- Mandl, Thomas and
34
- Kumaresan, Prasanna Kumar and
35
- Ponnsamy, Rahul and
36
- V,Hariharan and
37
- Sherly, Elizabeth and
38
- McCrae, John Philip },
39
- booktitle = "Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages",
40
- month = April,
41
- year = "2021",
42
- publisher = "Association for Computational Linguistics",
43
- year={2021}
44
- }
45
- """
46
-
47
- _DESCRIPTION = """\
48
- Offensive language identification in dravidian lanaguages dataset. The goal of this task is to identify offensive language content of the code-mixed dataset of comments/posts in Dravidian Languages ( (Tamil-English, Malayalam-English, and Kannada-English)) collected from social media.
49
- """
50
-
51
- _LICENSE = "Creative Commons Attribution 4.0 International Licence"
52
-
53
- _URLs = {
54
- "tamil": {
55
- "TRAIN_DOWNLOAD_URL": "https://drive.google.com/u/0/uc?id=15auwrFAlq52JJ61u7eSfnhT9rZtI5sjk&export=download",
56
- "VALIDATION_DOWNLOAD_URL": "https://drive.google.com/u/0/uc?id=1Jme-Oftjm7OgfMNLKQs1mO_cnsQmznRI&export=download",
57
- },
58
- "malayalam": {
59
- "TRAIN_DOWNLOAD_URL": "https://drive.google.com/u/0/uc?id=13JCCr-IjZK7uhbLXeufptr_AxvsKinVl&export=download",
60
- "VALIDATION_DOWNLOAD_URL": "https://drive.google.com/u/0/uc?id=1J0msLpLoM6gmXkjC6DFeQ8CG_rrLvjnM&export=download",
61
- },
62
- "kannada": {
63
- "TRAIN_DOWNLOAD_URL": "https://drive.google.com/u/0/uc?id=1BFYF05rx-DK9Eb5hgoIgd6EcB8zOI-zu&export=download",
64
- "VALIDATION_DOWNLOAD_URL": "https://drive.google.com/u/0/uc?id=1V077dMQvscqpUmcWTcFHqRa_vTy-bQ4H&export=download",
65
- },
66
- }
67
-
68
-
69
- class OffensevalDravidian(datasets.GeneratorBasedBuilder):
70
- """Offensive language identification in dravidian lanaguages dataset"""
71
-
72
- VERSION = datasets.Version("1.0.0")
73
-
74
- BUILDER_CONFIGS = [
75
- datasets.BuilderConfig(
76
- name="tamil", version=VERSION, description="This part of my dataset covers Tamil dataset"
77
- ),
78
- datasets.BuilderConfig(
79
- name="malayalam", version=VERSION, description="This part of my dataset covers Malayalam dataset"
80
- ),
81
- datasets.BuilderConfig(
82
- name="kannada", version=VERSION, description="This part of my dataset covers Kannada dataset"
83
- ),
84
- ]
85
-
86
- def _info(self):
87
-
88
- if self.config.name == "tamil": # This is the name of the configuration selected in BUILDER_CONFIGS above
89
- features = datasets.Features(
90
- {
91
- "text": datasets.Value("string"),
92
- "label": datasets.features.ClassLabel(
93
- names=[
94
- "Not_offensive",
95
- "Offensive_Untargetede",
96
- "Offensive_Targeted_Insult_Individual",
97
- "Offensive_Targeted_Insult_Group",
98
- "Offensive_Targeted_Insult_Other",
99
- "not-Tamil",
100
- ]
101
- ),
102
- }
103
- )
104
- elif self.config.name == "malayalam":
105
- features = datasets.Features(
106
- {
107
- "text": datasets.Value("string"),
108
- "label": datasets.features.ClassLabel(
109
- names=[
110
- "Not_offensive",
111
- "Offensive_Untargetede",
112
- "Offensive_Targeted_Insult_Individual",
113
- "Offensive_Targeted_Insult_Group",
114
- "Offensive_Targeted_Insult_Other",
115
- "not-malayalam",
116
- ]
117
- ),
118
- }
119
- )
120
-
121
- # else self.config.name == "kannada":
122
- else:
123
- features = datasets.Features(
124
- {
125
- "text": datasets.Value("string"),
126
- "label": datasets.features.ClassLabel(
127
- names=[
128
- "Not_offensive",
129
- "Offensive_Untargetede",
130
- "Offensive_Targeted_Insult_Individual",
131
- "Offensive_Targeted_Insult_Group",
132
- "Offensive_Targeted_Insult_Other",
133
- "not-Kannada",
134
- ]
135
- ),
136
- }
137
- )
138
-
139
- return datasets.DatasetInfo(
140
- # This is the description that will appear on the datasets page.
141
- description=_DESCRIPTION,
142
- # This defines the different columns of the dataset and their types
143
- features=features, # Here we define them above because they are different between the two configurations
144
- # If there's a common (input, target) tuple from the features,
145
- # specify them here. They'll be used if as_supervised=True in
146
- # builder.as_dataset.
147
- supervised_keys=None,
148
- # Homepage of the dataset for documentation
149
- homepage=_HOMEPAGE,
150
- # License for the dataset if available
151
- license=_LICENSE,
152
- # Citation for the dataset
153
- citation=_CITATION,
154
- )
155
-
156
- def _split_generators(self, dl_manager):
157
- """Returns SplitGenerators."""
158
-
159
- my_urls = _URLs[self.config.name]
160
-
161
- train_path = dl_manager.download_and_extract(my_urls["TRAIN_DOWNLOAD_URL"])
162
- validation_path = dl_manager.download_and_extract(my_urls["VALIDATION_DOWNLOAD_URL"])
163
-
164
- return [
165
- datasets.SplitGenerator(
166
- name=datasets.Split.TRAIN,
167
- gen_kwargs={
168
- "filepath": train_path,
169
- "split": "train",
170
- },
171
- ),
172
- datasets.SplitGenerator(
173
- name=datasets.Split.VALIDATION,
174
- gen_kwargs={
175
- "filepath": validation_path,
176
- "split": "validation",
177
- },
178
- ),
179
- ]
180
-
181
- def _generate_examples(self, filepath, split):
182
- """Generate Offenseval_dravidian examples."""
183
-
184
- with open(filepath, encoding="utf-8") as csv_file:
185
- csv_reader = csv.reader(
186
- csv_file, quotechar='"', delimiter="\t", quoting=csv.QUOTE_ALL, skipinitialspace=False
187
- )
188
-
189
- for id_, row in enumerate(csv_reader):
190
-
191
- if self.config.name == "kannada":
192
- text, label = row
193
- else:
194
- text, label, dummy = row
195
-
196
- yield id_, {"text": text, "label": label}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tamil/offenseval_dravidian-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54af32680782c2f3c495b323d32597295c563c8c9027fd0193f38f2acd93ba40
3
+ size 2392027
tamil/offenseval_dravidian-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a68ec427da4797ac5f8f18abd57fb93c9fed53a637f84f6439b3c9642210c26a
3
+ size 298033