# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Roman Urdu data corpus with 20,000 polarity labeled records""" import csv import os import datasets from datasets.tasks import TextClassification _CITATION = """\ @InProceedings{Sharf:2018, title = "Performing Natural Language Processing on Roman Urdu Datasets", authors = "Zareen Sharf and Saif Ur Rahman", booktitle = "International Journal of Computer Science and Network Security", volume = "18", number = "1", pages = "141-148", year = "2018" } @misc{Dua:2019, author = "Dua, Dheeru and Graff, Casey", year = "2017", title = "{UCI} Machine Learning Repository", url = "http://archive.ics.uci.edu/ml", institution = "University of California, Irvine, School of Information and Computer Sciences" } """ _DESCRIPTION = """\ This is an extensive compilation of Roman Urdu Dataset (Urdu written in Latin/Roman script) tagged for sentiment analysis. """ _HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Roman+Urdu+Data+Set" _URL = "https://archive.ics.uci.edu/ml/machine-learning-databases/00458/Roman%20Urdu%20DataSet.csv" class RomanUrdu(datasets.GeneratorBasedBuilder): """Roman Urdu sentences gathered from reviews of various e-commerce websites, comments on public Facebook pages, and twitter accounts, with positive, neutral, and negative polarity labels per each row.""" VERSION = datasets.Version("1.1.0") def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "sentence": datasets.Value("string"), "sentiment": datasets.features.ClassLabel(names=["Positive", "Negative", "Neutral"]), } ), supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, task_templates=[TextClassification(text_column="sentence", label_column="sentiment")], ) def _split_generators(self, dl_manager): data_dir = dl_manager.download_and_extract(_URL) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": os.path.join(data_dir), "split": "train", }, ), ] def _generate_examples(self, filepath, split): with open(filepath, encoding="utf-8") as f: reader = csv.reader(f, delimiter=",") for id_, row in enumerate(reader): yield id_, { "sentence": row[0], # 'Neative' typo in original dataset "sentiment": "Negative" if row[1] == "Neative" else row[1], }