|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""SentiWS: German-language resource for sentiment analysis, pos-tagging""" |
|
|
|
|
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@INPROCEEDINGS{remquahey2010, |
|
title = {SentiWS -- a Publicly Available German-language Resource for Sentiment Analysis}, |
|
booktitle = {Proceedings of the 7th International Language Resources and Evaluation (LREC'10)}, |
|
author = {Remus, R. and Quasthoff, U. and Heyer, G.}, |
|
year = {2010} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
SentimentWortschatz, or SentiWS for short, is a publicly available German-language resource for sentiment analysis, and pos-tagging. The POS tags are ["NN", "VVINF", "ADJX", "ADV"] -> ["noun", "verb", "adjective", "adverb"], and positive and negative polarity bearing words are weighted within the interval of [-1, 1]. |
|
""" |
|
|
|
_HOMEPAGE = "" |
|
|
|
_LICENSE = "Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License" |
|
|
|
_URLs = ["https://downloads.wortschatz-leipzig.de/etc/SentiWS/SentiWS_v2.0.zip"] |
|
|
|
|
|
class SentiWS(datasets.GeneratorBasedBuilder): |
|
"""SentiWS: German-language resource for sentiment analysis, pos-tagging""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="pos-tagging", version=VERSION, description="This covers pos-tagging task"), |
|
datasets.BuilderConfig( |
|
name="sentiment-scoring", |
|
version=VERSION, |
|
description="This covers the sentiment-scoring in [-1, 1] corresponding to (negative, positive) sentiment", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "pos-tagging" |
|
|
|
def _info(self): |
|
|
|
if ( |
|
self.config.name == "pos-tagging" |
|
): |
|
features = datasets.Features( |
|
{ |
|
"word": datasets.Value("string"), |
|
"pos-tag": datasets.ClassLabel(names=["NN", "VVINF", "ADJX", "ADV"]), |
|
} |
|
) |
|
else: |
|
features = datasets.Features( |
|
{ |
|
"word": datasets.Value("string"), |
|
"sentiment-score": datasets.Value("float32"), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
|
|
|
|
|
|
supervised_keys=None, |
|
|
|
homepage=_HOMEPAGE, |
|
|
|
license=_LICENSE, |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
my_urls = _URLs |
|
data_dir = dl_manager.download_and_extract(my_urls) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"sourcefiles": [ |
|
os.path.join(data_dir[0], f) |
|
for f in ["SentiWS_v2.0_Positive.txt", "SentiWS_v2.0_Negative.txt"] |
|
], |
|
"split": "train", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, sourcefiles, split): |
|
"""Yields examples.""" |
|
|
|
|
|
|
|
for file_idx, filepath in enumerate(sourcefiles): |
|
with open(filepath, encoding="utf-8") as f: |
|
for id_, row in enumerate(f): |
|
word = row.split("|")[0] |
|
if self.config.name == "pos-tagging": |
|
tag = row.split("|")[1].split("\t")[0] |
|
yield f"{file_idx}_{id_}", {"word": word, "pos-tag": tag} |
|
else: |
|
sentiscore = row.split("|")[1].split("\t")[1] |
|
yield f"{file_idx}_{id_}", {"word": word, "sentiment-score": float(sentiscore)} |
|
|