MegaWika / megawika.py
conceptofmind's picture
Update megawika.py
37af255 verified
raw
history blame
10.9 kB
import datasets
import json
import yaml
import urllib.request
_DESCRIPTION = """\
MegaWika is a multi- and crosslingual text dataset containing 30 million
Wikipedia passages with their scraped and cleaned web citations. The
passages span 50 Wikipedias in 50 languages, and the articles in which
the passages were originally embedded are included for convenience."""
_CITATION = """\
@article{barham2023megawika,
title={MegaWika: Millions of reports and their sources across 50 diverse languages},
author={Barham, Samuel and Weller, Orion and others},
journal={INSERT ARXIV PREPRINT ID HERE},
year={2023}
}"""
_HOMEPAGE = "https://huggingface.co/datasets/conceptofmind/MegaWika"
_LICENSE = "cc-by-sa-4.0"
# Load the file paths for all the splits
file_list_url = "https://huggingface.co/datasets/conceptofmind/MegaWika/raw/main/files.yml"
def get_data_urls():
with urllib.request.urlopen(file_list_url) as f:
try:
fnames = yaml.safe_load(f)
return fnames['fnames']
except yaml.YAMLError as exc:
print("Error loading the file paths for the dataset splits. Aborting.")
return {}
class MegaWikaConfig(datasets.BuilderConfig):
"""BuilderConfig for MegaWika."""
def __init__(self, language=None, **kwargs):
"""BuilderConfig for MegaWika.
Args:
language: The language of the dataset split
**kwargs: Keyword arguments forwarded to super.
"""
super(MegaWikaConfig, self).__init__(**kwargs)
self.language = language
class MegaWika(datasets.GeneratorBasedBuilder):
"""MegaWika dataset."""
# Get available languages from the data URLs
_DATA_URL = get_data_urls()
BUILDER_CONFIGS = [
MegaWikaConfig(
name=lang if lang != "all" else "default",
language=lang,
version=datasets.Version("1.0.0"),
description=f"MegaWika {lang} configuration"
)
for lang in ["all"] + list(_DATA_URL.keys())
]
DEFAULT_CONFIG_NAME = "default" # For the "all" configuration
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"article_title": datasets.Value("string"),
"article_text": datasets.Value("string"),
"entries": datasets.features.Sequence(
{
"id": datasets.Value("string"),
"passage": {
"text": [datasets.Value("string")],
"parse": datasets.Value("string"),
"en_tokens": [datasets.Value("string")],
"lang_tokens": [datasets.Value("string")],
"en_lang_token_map": [[datasets.Value("int32")]]
},
"mt": {
"original": datasets.Value("string"),
"original_sents": [datasets.Value("string")],
"translation": datasets.Value("string"),
"translation_sents": [datasets.Value("string")],
"translation_probs": [[datasets.Value("string")]],
"repetitious_translation": datasets.Value("bool")
},
"source_lang": datasets.Value("string"),
"source_url": datasets.Value("string"),
"source_text": datasets.Value("string"),
"qa_pairs": datasets.Sequence(
{
"question": datasets.Value("string"),
"en_answer": datasets.Value("string"),
"lang_answer": datasets.Value("string"),
"frames": datasets.Sequence(
{
"frame": datasets.Value("string"),
"argument": datasets.Value("string")
}
),
"en_matches_in_source": [[datasets.Value("int32")]],
"en_match_in_passage": [datasets.Value("int32")],
"lang_matches_in_source": [[datasets.Value("int32")]],
"lang_match_in_passage": [datasets.Value("int32")],
"passage": [datasets.Value("string")],
"en_answer_tokens": [datasets.Value("string")],
"match_disambiguated_question": datasets.Value("string"),
}
)
}
)
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
license=_LICENSE
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
if self.config.language == "all":
data_sources = self._DATA_URL
else:
data_sources = {self.config.language: self._DATA_URL[self.config.language]}
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, # Using TRAIN as default split
gen_kwargs={
"filepaths": dl_manager.download(data_sources[lang])
}
)
for lang in data_sources
]
def _get_qa_pair_list_features(self, qa_pair, feature_name):
"""Helper method to extract QA pair features."""
if feature_name in qa_pair and qa_pair[feature_name]:
return qa_pair[feature_name]
elif feature_name.startswith('en'):
base_feature = '_'.join(feature_name.split('_')[1:])
if base_feature in qa_pair and qa_pair[base_feature]:
return qa_pair[base_feature]
return []
def _generate_examples(self, filepaths):
"""Yields examples."""
id_ = 0
for filepath in filepaths:
try:
with open(filepath, "r", encoding="utf-8") as f:
for line in f:
if line:
example = json.loads(line)
if example is not None and isinstance(example, dict):
yield id_, {
"article_title": example.get("article_title", ""),
"article_text": example.get("article_text", ""),
"entries": [
{
"id": entry.get("id", "").lower(),
"passage": {
"text": entry['passage'].get("text", []),
"parse": json.dumps(entry['passage'].get("parse", [{}])),
"en_tokens": list(entry['passage'].get("en_tokens", {}).values()),
"lang_tokens": list(entry['passage'].get("lang_tokens", {}).values()),
"en_lang_token_map": [
(int(item[0]), int(item[1]))
for item in entry['passage'].get("en_lang_token_map", {}).items()
]
},
"mt": {
"original": entry.get("original", ""),
"original_sents": entry.get("original_sents", []),
"translation": entry.get("translation", ""),
"translation_sents": entry.get("translation_sents", []),
"translation_probs": entry.get("translation_probs", [[]]),
"repetitious_translation": entry.get("repetitious_translation", False)
},
"source_lang": entry.get("source_lang", ""),
"source_url": entry.get("source_url", ""),
"source_text": entry.get("source_text", ""),
"qa_pairs": [
{
"question": qa_pair.get('question', ""),
"en_answer": qa_pair.get('en_answer', qa_pair.get('answer', "")),
'lang_answer': qa_pair.get('lang_answer', ''),
'frames': qa_pair.get('frames', []),
"en_matches_in_source": self._get_qa_pair_list_features(qa_pair, "en_matches_in_source"),
"en_match_in_passage": self._get_qa_pair_list_features(qa_pair, "en_match_in_passage"),
"lang_matches_in_source": self._get_qa_pair_list_features(qa_pair, "lang_matches_in_source"),
"lang_match_in_passage": self._get_qa_pair_list_features(qa_pair, "lang_match_in_passage"),
"passage": qa_pair.get('passage', []),
"en_answer_tokens": qa_pair.get('en_answer_tokens', qa_pair.get('answer_tokens', [])),
"match_disambiguated_question": qa_pair.get('match_disambiguated_question', ""),
}
for qa_pair in entry.get('qa_pairs', [])
]
}
for entry in example.get("entries", [])
]
}
id_ += 1
except Exception as e:
print(f"Error reading file {filepath}: {str(e)}")