conceptofmind commited on
Commit
f53e412
1 Parent(s): 5e630a4

Create megawika.py

Browse files
Files changed (1) hide show
  1. megawika.py +281 -0
megawika.py ADDED
@@ -0,0 +1,281 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Datasets Authors and
2
+ # the Johns Hopkins University (JHU) Human Language Technology
3
+ # Center of Excellence.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """
17
+ This file provides a HuggingFace dataset loader implementation for
18
+ the JHU/HLTCOE MegaWika dataset.
19
+ MegaWika is a multi- and crosslingual text dataset containing 30 million
20
+ Wikipedia passages with their scraped and cleaned web citations. The
21
+ passages span 50 Wikipedias in 50 languages, and the articles in which
22
+ the passages were originally embedded are included for convenience. Where
23
+ a Wikipedia passage is in a non-English language, an automated English
24
+ translation is provided. Furthermore, nearly 130 million English
25
+ question/answer pairs were extracted from the passages, and FrameNet events
26
+ occurring in the passages are detected using the LOME FrameNet parser.
27
+ """
28
+
29
+
30
+ import csv
31
+ import json
32
+ import os
33
+ import re
34
+ import pathlib
35
+ from pathlib import Path
36
+ import yaml
37
+ from ast import literal_eval
38
+
39
+ import datasets
40
+
41
+ # import gzip
42
+ # try:
43
+ # import lzma as xz
44
+ # except ImportError:
45
+ # import pylzma as xz
46
+
47
+
48
+ # TODO: Add BibTeX citation
49
+ # Find for instance the citation on arxiv or on the dataset repo/website
50
+ _CITATION = """\
51
+ @article{barham2023megawika,
52
+ title={MegaWika: Millions of reports and their sources across 50 diverse languages},
53
+ author={Barham, Samuel and Weller, Orion and
54
+ Yuan, Michelle and Murray, Kenton and
55
+ Yarmohammadi, Mahsa and Jiang, Zhengping and
56
+ Vashishtha, Siddharth and Martin, Alexander and
57
+ Liu, Anqi and White, Aaron Steven and
58
+ Boyd-Graber, Jordan and Van Durme, Benjamin
59
+ },
60
+ journal={INSERT ARXIV PREPRINT ID HERE},
61
+ year={2023}
62
+ }
63
+ """
64
+
65
+ # TODO: Add description of the dataset here
66
+ # You can copy an official description
67
+ _DESCRIPTION = """\
68
+ MegaWika is a multi- and crosslingual text dataset containing 30 million
69
+ Wikipedia passages with their scraped and cleaned web citations. The
70
+ passages span 50 Wikipedias in 50 languages, and the articles in which
71
+ the passages were originally embedded are included for convenience. Where
72
+ a Wikipedia passage is in a non-English language, an automated English
73
+ translation is provided. Furthermore, nearly 130 million English
74
+ question/answer pairs were extracted from the passages, and FrameNet events
75
+ occurring in the passages are detected using the LOME FrameNet parser.
76
+ """
77
+
78
+ _HOMEPAGE = "https://huggingface.co/datasets/conceptofmind/MegaWika"
79
+
80
+ _LICENSE = "cc-by-sa-4.0"
81
+
82
+ _URL = "https://huggingface.co/datasets/conceptofmind/MegaWika"
83
+
84
+ # Load the file paths for all the splits (per language currently)
85
+
86
+ file_list_url = "https://huggingface.co/datasets/conceptofmind/MegaWika/raw/main/files.yml"
87
+
88
+ import urllib.request
89
+ with urllib.request.urlopen(file_list_url) as f:
90
+ try:
91
+ fnames = yaml.safe_load(f)
92
+ except yaml.YAMLError as exc:
93
+ print("Error loading the file paths for the dataset splits. Aborting.")
94
+ exit(1)
95
+
96
+ _DATA_URL = fnames['fnames']
97
+
98
+ _VARIANTS = ["all"] + list(_DATA_URL.keys())
99
+
100
+
101
+ class MegaWika(datasets.GeneratorBasedBuilder):
102
+ BUILDER_CONFIGS = [datasets.BuilderConfig(name) for name in _VARIANTS]
103
+
104
+ def _info(self):
105
+ return datasets.DatasetInfo(
106
+ description=_DESCRIPTION,
107
+ features=datasets.Features(
108
+ {
109
+ "article_title": datasets.Value("string"),
110
+ "article_text": datasets.Value("string"),
111
+ "entries": datasets.features.Sequence(
112
+ {
113
+ "id": datasets.Value("string"),
114
+
115
+ # Wiki passage
116
+ "passage": {
117
+ "text": [datasets.Value("string")],
118
+ "parse": datasets.Value("string"),
119
+ "en_tokens": [datasets.Value("string")],
120
+ "lang_tokens": [datasets.Value("string")],
121
+ "en_lang_token_map": [[datasets.Value("int32")]] # list of pairs
122
+ },
123
+
124
+ # MT
125
+ "mt": {
126
+ "original": datasets.Value("string"),
127
+ "original_sents": [datasets.Value("string")],
128
+ "translation": datasets.Value("string"),
129
+ "translation_sents": [datasets.Value("string")],
130
+ "translation_probs": [[datasets.Value("string")]],
131
+ "repetitious_translation": datasets.Value("bool")
132
+ },
133
+
134
+ # Source document
135
+ "source_lang": datasets.Value("string"),
136
+ "source_url": datasets.Value("string"),
137
+ "source_text": datasets.Value("string"),
138
+
139
+ # Question/answer pairs
140
+ "qa_pairs": datasets.Sequence(
141
+ {
142
+ "question": datasets.Value("string"),
143
+ "en_answer": datasets.Value("string"),
144
+ "lang_answer": datasets.Value("string"),
145
+ "frames": datasets.Sequence(
146
+ {
147
+ "frame": datasets.Value("string"),
148
+ "argument": datasets.Value("string")
149
+ }
150
+ ),
151
+ "en_matches_in_source": [[datasets.Value("int32")]], # list of pair of int indices
152
+ "en_match_in_passage": [datasets.Value("int32")], # pair of int indices
153
+ "lang_matches_in_source": [[datasets.Value("int32")]], # list of pair of int indices
154
+ "lang_match_in_passage": [datasets.Value("int32")], # pair of int indices
155
+ "passage": [datasets.Value("string")],
156
+ "en_answer_tokens": [datasets.Value("string")],
157
+ "match_disambiguated_question": datasets.Value("string"),
158
+ }
159
+ )
160
+ }
161
+ )
162
+ }
163
+ ),
164
+ supervised_keys=None,
165
+ homepage=_URL,
166
+ citation=_CITATION,
167
+ )
168
+
169
+ def _split_generators(self, dl_manager):
170
+ if self.config.name == "all":
171
+ data_sources = _DATA_URL
172
+ else:
173
+ data_sources = {self.config.name: _DATA_URL[self.config.name]}
174
+
175
+ return [
176
+ datasets.SplitGenerator(
177
+ name=lang,
178
+ gen_kwargs={
179
+ "filepaths": dl_manager.download(data_sources[lang])
180
+ }
181
+ )
182
+ for lang
183
+ in data_sources
184
+ ]
185
+
186
+ def _get_qa_pair_list_features(self, qa_pair, feature_name):
187
+ res = []
188
+
189
+ if feature_name in qa_pair:
190
+ if qa_pair[feature_name]:
191
+ return qa_pair[feature_name]
192
+ else:
193
+ if feature_name.startswith('en'):
194
+ feature_name = '_'.join(feature_name.split('_')[1:])
195
+ return self._get_qa_pair_list_features(qa_pair, feature_name)
196
+
197
+ return res
198
+
199
+ def _generate_examples(self, filepaths):
200
+ """This function returns the examples in the raw (text) form by iterating on all the files."""
201
+ id_ = 0
202
+ for filepath in filepaths:
203
+ # logger.info("Generating examples from = %s", filepath)
204
+ try:
205
+ with open(filepath, "r", encoding="utf-8") as f:
206
+ for line in f:
207
+ if line:
208
+ example = json.loads(line)
209
+ if example is not None and isinstance(example, dict):
210
+ yield id_, {
211
+ "article_title": example.get("article_title", ""),
212
+ "article_text": example.get("article_text", ""),
213
+ "entries": [
214
+ {
215
+ "id": entry.get("id", "").lower(),
216
+ "passage": {
217
+ "text": entry['passage'].get("text", []),
218
+ "parse": json.dumps(entry['passage'].get("parse", [{}])),
219
+ "en_tokens": list(entry['passage'].get(
220
+ "en_tokens",
221
+ {
222
+ token: token
223
+ for tokens in entry['passage'].get("tokens", {})
224
+ for token in tokens
225
+ }
226
+ ).values()),
227
+ "lang_tokens": list(entry['passage'].get("lang_tokens", {}).values()),
228
+ "en_lang_token_map": [
229
+ (int(item[0]), int(item[1]))
230
+ for item
231
+ in entry['passage'].get("en_lang_token_map", {}).items()
232
+ ]
233
+ },
234
+ "mt": {
235
+ "original": entry.get("original", ""),
236
+ "original_sents": entry.get("original_sents", []),
237
+ "translation": entry.get("translation", ""),
238
+ "translation_sents": entry.get("translation_sents", []),
239
+ "translation_probs": entry.get("translation_probs", [[]]),
240
+ "repetitious_translation": entry.get("repetitious_translation", None)
241
+ },
242
+ "source_lang": entry.get("source_lang", ""),
243
+ "source_url": entry.get("source_url", ""),
244
+ "source_text": entry.get("source_text", ""),
245
+ "qa_pairs": [
246
+ {
247
+ "question": qa_pair.get('question', ""),
248
+ "en_answer": qa_pair.get('en_answer', qa_pair.get('answer', "")),
249
+ 'lang_answer': qa_pair.get('lang_answer', ''),
250
+ 'frames': qa_pair.get('frames', []),
251
+ "en_matches_in_source": self._get_qa_pair_list_features(qa_pair, "en_matches_in_source"),
252
+ "en_match_in_passage": self._get_qa_pair_list_features(qa_pair, "en_match_in_passage"),
253
+ "lang_matches_in_source": self._get_qa_pair_list_features(qa_pair, "lang_matches_in_source"),
254
+ "lang_match_in_passage": self._get_qa_pair_list_features(qa_pair, "lang_match_in_passage"),
255
+ "passage": qa_pair.get('passage', []),
256
+ "en_answer_tokens": qa_pair.get('en_answer_tokens', qa_pair.get('answer_tokens', [])),
257
+ "match_disambiguated_question": qa_pair.get('match_disambiguated_question', ""),
258
+ }
259
+ for qa_pair
260
+ in entry.get('qa_pairs', [])
261
+ ]
262
+ }
263
+ for entry
264
+ in example.get("entries", [])
265
+ ]
266
+ }
267
+ id_ += 1
268
+ except:
269
+ print("Error reading file:", filepath)
270
+
271
+
272
+
273
+ # "entries": datasets.features.Sequence(
274
+ # {
275
+ # "qa_pairs": datasets.Sequence(
276
+ # {
277
+ # "question": datasets.Value("string"),
278
+ # "answer": datasets.Value("string"),
279
+ # }
280
+ # )
281
+ # }