|
|
|
|
|
"""AudioSet sound event classification dataset.""" |
|
|
|
|
|
import os |
|
import json |
|
import textwrap |
|
import datasets |
|
import itertools |
|
import typing as tp |
|
import pandas as pd |
|
from pathlib import Path |
|
from huggingface_hub import hf_hub_download |
|
|
|
|
|
SAMPLE_RATE = 32_000 |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/confit/audioset" |
|
|
|
_BALANCED_TRAIN_FILENAME = 'balanced_train_segments.zip' |
|
_EVAL_FILENAME = 'eval_segments.zip' |
|
|
|
ID2LABEL = json.load( |
|
open(hf_hub_download("huggingface/label-files", "audioset-id2label.json", repo_type="dataset"), "r") |
|
) |
|
LABEL2ID = {v:k for k, v in ID2LABEL.items()} |
|
CLASSES = list(set(LABEL2ID.keys())) |
|
|
|
|
|
class AudioSetConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for AudioSet.""" |
|
|
|
def __init__(self, features, **kwargs): |
|
super(AudioSetConfig, self).__init__(version=datasets.Version("0.0.1", ""), **kwargs) |
|
self.features = features |
|
|
|
|
|
class AudioSet(datasets.GeneratorBasedBuilder): |
|
|
|
BUILDER_CONFIGS = [ |
|
AudioSetConfig( |
|
features=datasets.Features( |
|
{ |
|
"file": datasets.Value("string"), |
|
"audio": datasets.Audio(sampling_rate=SAMPLE_RATE), |
|
"sound": datasets.Sequence(datasets.Value("string")), |
|
"label": datasets.Sequence(datasets.features.ClassLabel(names=CLASSES)), |
|
} |
|
), |
|
name="balanced", |
|
description="", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "balanced" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description="", |
|
features=self.config.features, |
|
supervised_keys=None, |
|
homepage="", |
|
citation="", |
|
task_templates=None, |
|
) |
|
|
|
def _preprocess_metadata_csv(self, csv_file): |
|
df = pd.read_csv(csv_file, skiprows=2, sep=', ', engine='python') |
|
df.rename(columns={'positive_labels': 'ids'}, inplace=True) |
|
df['ids'] = [label.strip('\"').split(',') for label in df['ids']] |
|
df['filename'] = ( |
|
'Y' + df['# YTID'] + '.wav' |
|
) |
|
return df[['filename', 'ids']] |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
if self.config.name == 'balanced': |
|
archive_path = dl_manager.extract(_BALANCED_TRAIN_FILENAME) |
|
elif self.config.name == 'unbalanced': |
|
archive_path = dl_manager.extract(_UNBALANCED_TRAIN_FILENAME) |
|
test_archive_path = dl_manager.extract(_EVAL_FILENAME) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, gen_kwargs={"archive_path": archive_path, "split": "train"} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, gen_kwargs={"archive_path": test_archive_path, "split": "test"} |
|
), |
|
] |
|
|
|
def _generate_examples(self, archive_path, split=None): |
|
extensions = ['.wav'] |
|
|
|
if split == 'train': |
|
if self.config.name == 'balanced': |
|
train_metadata_csv = f"{_HOMEPAGE}/resolve/main/metadata/balanced_train_segments.csv" |
|
elif self.config.name == 'unbalanced': |
|
train_metadata_csv = f"{_HOMEPAGE}/resolve/main/metadata/unbalanced_train_segments.csv" |
|
metadata_df = self._preprocess_metadata_csv(train_metadata_csv) |
|
elif split == 'test': |
|
test_metadata_csv = f"{_HOMEPAGE}/resolve/main/metadata/eval_segments.csv" |
|
metadata_df = self._preprocess_metadata_csv(test_metadata_csv) |
|
|
|
class_labels_indices_df = pd.read_csv( |
|
f"{_HOMEPAGE}/resolve/main/metadata/class_labels_indices.csv" |
|
) |
|
mid2label = { |
|
row['mid']:row['display_name'] for idx, row in class_labels_indices_df.iterrows() |
|
} |
|
|
|
def default_find_classes(audio_path): |
|
fileid = Path(audio_path).name |
|
ids = metadata_df.query(f'filename=="{fileid}"')['ids'].values.tolist() |
|
ids = [ |
|
mid2label.get(mid, None) for mid in flatten(ids) |
|
] |
|
return ids |
|
|
|
_, _walker = fast_scandir(archive_path, extensions, recursive=True) |
|
|
|
for guid, audio_path in enumerate(_walker): |
|
yield guid, { |
|
"id": str(guid), |
|
"file": audio_path, |
|
"audio": audio_path, |
|
"sound": default_find_classes(audio_path), |
|
"label": default_find_classes(audio_path), |
|
} |
|
|
|
|
|
def flatten(list2d): |
|
return list(itertools.chain.from_iterable(list2d)) |
|
|
|
|
|
def fast_scandir(path: str, exts: tp.List[str], recursive: bool = False): |
|
|
|
|
|
subfolders, files = [], [] |
|
|
|
try: |
|
for f in os.scandir(path): |
|
try: |
|
if f.is_dir(): |
|
subfolders.append(f.path) |
|
elif f.is_file(): |
|
if os.path.splitext(f.name)[1].lower() in exts: |
|
files.append(f.path) |
|
except Exception: |
|
pass |
|
except Exception: |
|
pass |
|
|
|
if recursive: |
|
for path in list(subfolders): |
|
sf, f = fast_scandir(path, exts, recursive=recursive) |
|
subfolders.extend(sf) |
|
files.extend(f) |
|
|
|
return subfolders, files |