|
|
|
|
|
"""MagnaTagATune dataset.""" |
|
|
|
|
|
import os |
|
import json |
|
import gzip |
|
import shutil |
|
import pathlib |
|
import logging |
|
import textwrap |
|
import datasets |
|
import itertools |
|
import typing as tp |
|
import pandas as pd |
|
import urllib.request |
|
from pathlib import Path |
|
from copy import deepcopy |
|
from tqdm.auto import tqdm |
|
from rich.logging import RichHandler |
|
|
|
logger = logging.getLogger(__name__) |
|
logger.addHandler(RichHandler()) |
|
logger.setLevel(logging.INFO) |
|
|
|
SAMPLE_RATE = 16_000 |
|
|
|
|
|
VERSION = "0.0.1" |
|
DEFAULT_XDG_CACHE_HOME = "~/.cache" |
|
XDG_CACHE_HOME = os.getenv("XDG_CACHE_HOME", DEFAULT_XDG_CACHE_HOME) |
|
DEFAULT_HF_CACHE_HOME = os.path.join(XDG_CACHE_HOME, "huggingface") |
|
HF_CACHE_HOME = os.path.expanduser(os.getenv("HF_HOME", DEFAULT_HF_CACHE_HOME)) |
|
DEFAULT_HF_DATASETS_CACHE = os.path.join(HF_CACHE_HOME, "datasets") |
|
HF_DATASETS_CACHE = Path(os.getenv("HF_DATASETS_CACHE", DEFAULT_HF_DATASETS_CACHE)) |
|
|
|
TOP_50_CLASSES = [ |
|
'ambient', 'beat', 'beats', 'cello', 'choir', 'choral', 'classic', 'classical', 'country', 'dance', |
|
'drums', 'electronic', 'fast', 'female', 'female vocal', 'female voice', 'flute', 'guitar', 'harp', 'harpsichord', |
|
'indian', 'loud', 'male', 'male vocal', 'male voice', 'man', 'metal', 'new age', 'no vocal', 'no vocals', |
|
'no voice', 'opera', 'piano', 'pop', 'quiet', 'rock', 'singing', 'sitar', 'slow', 'soft', |
|
'solo', 'strings', 'synth', 'techno', 'violin', 'vocal', 'vocals', 'voice', 'weird', 'woman' |
|
] |
|
CLASS2INDEX = {cls:idx for idx, cls in enumerate(TOP_50_CLASSES)} |
|
INDEX2CLASS = {idx:cls for idx, cls in enumerate(TOP_50_CLASSES)} |
|
|
|
|
|
class MagnaTagATuneConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for MagnaTagATune.""" |
|
|
|
def __init__(self, features, **kwargs): |
|
super(MagnaTagATuneConfig, self).__init__(version=datasets.Version(VERSION, ""), **kwargs) |
|
self.features = features |
|
|
|
|
|
class MagnaTagATune(datasets.GeneratorBasedBuilder): |
|
|
|
BUILDER_CONFIGS = [ |
|
MagnaTagATuneConfig( |
|
features=datasets.Features( |
|
{ |
|
"file": datasets.Value("string"), |
|
"audio": datasets.Audio(sampling_rate=SAMPLE_RATE), |
|
"tags": datasets.Sequence(datasets.Value("string")), |
|
"label": datasets.Sequence(datasets.features.ClassLabel(names=TOP_50_CLASSES)), |
|
} |
|
), |
|
name="top50", |
|
description="", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "top50" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description="", |
|
features=self.config.features, |
|
supervised_keys=None, |
|
homepage="", |
|
citation="", |
|
task_templates=None, |
|
) |
|
|
|
def _load_metadata(self): |
|
|
|
df = pd.read_csv("https://mirg.city.ac.uk/datasets/magnatagatune/annotations_final.csv", sep="\t") |
|
df = df[df[TOP_50_CLASSES].sum(axis=1) > 0] |
|
df = df[TOP_50_CLASSES + ["mp3_path", "clip_id"]] |
|
|
|
train_ids_df = pd.read_csv( |
|
'https://raw.githubusercontent.com/jordipons/musicnn-training/master/data/index/mtt/train_gt_mtt.tsv', |
|
sep='\t', header=None |
|
) |
|
train_ids = train_ids_df[0].tolist() |
|
train_df = df[df["clip_id"].isin(train_ids)] |
|
|
|
validation_ids_df = pd.read_csv( |
|
"https://raw.githubusercontent.com/jordipons/musicnn-training/master/data/index/mtt/val_gt_mtt.tsv", |
|
sep="\t", header=None |
|
) |
|
validation_ids = validation_ids_df[0].tolist() |
|
validation_df = df[df["clip_id"].isin(validation_ids)] |
|
|
|
test_ids_df = pd.read_csv( |
|
"https://raw.githubusercontent.com/jordipons/musicnn-training/master/data/index/mtt/test_gt_mtt.tsv", |
|
sep="\t", header=None |
|
) |
|
test_ids = test_ids_df[0].tolist() |
|
test_df = df[df["clip_id"].isin(test_ids)] |
|
|
|
label_names = df.columns |
|
label_names = label_names.drop(["mp3_path", "clip_id"]) |
|
|
|
return train_df, validation_df, test_df, label_names |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
if self.config.name == 'top50': |
|
mp3_zip_files = [ |
|
'https://mirg.city.ac.uk/datasets/magnatagatune/mp3.zip.001', |
|
'https://mirg.city.ac.uk/datasets/magnatagatune/mp3.zip.002', |
|
'https://mirg.city.ac.uk/datasets/magnatagatune/mp3.zip.003', |
|
] |
|
for zip_file_url in mp3_zip_files: |
|
_filename = zip_file_url.split('/')[-1] |
|
_save_path = os.path.join( |
|
HF_DATASETS_CACHE, 'confit___magnatagatune/top50', VERSION, _filename |
|
) |
|
download_file(zip_file_url, _save_path) |
|
logger.info(f"`{_filename}` is downloaded to {_save_path}") |
|
|
|
main_zip_filename = 'mp3.zip' |
|
_save_dir = os.path.join(HF_DATASETS_CACHE, 'confit___magnatagatune/top50', VERSION) |
|
_output_file = os.path.join(_save_dir, main_zip_filename) |
|
|
|
if not os.path.exists(_output_file): |
|
logger.info(f"Concatenate zip files to {main_zip_filename}") |
|
os.system(f"cat {os.path.join(_save_dir, 'mp3.zip.*')} > {_output_file}") |
|
|
|
archive_path = dl_manager.extract(_output_file) |
|
logger.info(f"`{main_zip_filename}` is now extracted to {archive_path}") |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, gen_kwargs={"archive_path": archive_path, "split": "train"} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, gen_kwargs={"archive_path": archive_path, "split": "validation"} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, gen_kwargs={"archive_path": archive_path, "split": "test"} |
|
), |
|
] |
|
|
|
def _generate_examples(self, archive_path, split=None, metadata_df=None): |
|
train_df, validation_df, test_df, label_names = self._load_metadata() |
|
extensions = ['.mp3'] |
|
_, _walker = fast_scandir(archive_path, extensions, recursive=True) |
|
|
|
class2index = {cls:idx for idx, cls in enumerate(label_names)} |
|
index2class = {idx:cls for idx, cls in enumerate(label_names)} |
|
|
|
if split == 'train': |
|
fileid2class = {} |
|
for idx, row in train_df.iterrows(): |
|
fileid = row['mp3_path'] |
|
class_ = row[label_names].tolist() |
|
if sum(class_) == 0: |
|
continue |
|
class_ = [idx for idx, val in enumerate(class_) if val != 0] |
|
class_ = [index2class.get(idx) for idx in class_] |
|
fileid2class[fileid] = class_ |
|
elif split == 'validation': |
|
fileid2class = {} |
|
for idx, row in validation_df.iterrows(): |
|
fileid = row['mp3_path'] |
|
class_ = row[label_names].tolist() |
|
if sum(class_) == 0: |
|
continue |
|
class_ = [idx for idx, val in enumerate(class_) if val != 0] |
|
class_ = [index2class.get(idx) for idx in class_] |
|
fileid2class[fileid] = class_ |
|
elif split == 'test': |
|
fileid2class = {} |
|
for idx, row in test_df.iterrows(): |
|
fileid = row['mp3_path'] |
|
class_ = row[label_names].tolist() |
|
if sum(class_) == 0: |
|
continue |
|
class_ = [idx for idx, val in enumerate(class_) if val != 0] |
|
class_ = [index2class.get(idx) for idx in class_] |
|
fileid2class[fileid] = class_ |
|
|
|
for guid, audio_path in enumerate(_walker): |
|
parent = Path(audio_path).parent.stem |
|
filename = Path(audio_path).name |
|
fileid = f"{parent}/{filename}" |
|
if fileid not in fileid2class: |
|
continue |
|
tags = fileid2class.get(fileid) |
|
yield guid, { |
|
"id": str(guid), |
|
"file": audio_path, |
|
"audio": audio_path, |
|
"tags": tags, |
|
"label": tags, |
|
} |
|
|
|
|
|
def fast_scandir(path: str, exts: tp.List[str], recursive: bool = False): |
|
|
|
|
|
subfolders, files = [], [] |
|
|
|
try: |
|
for f in os.scandir(path): |
|
try: |
|
if f.is_dir(): |
|
subfolders.append(f.path) |
|
elif f.is_file(): |
|
if os.path.splitext(f.name)[1].lower() in exts: |
|
files.append(f.path) |
|
except Exception: |
|
pass |
|
except Exception: |
|
pass |
|
|
|
if recursive: |
|
for path in list(subfolders): |
|
sf, f = fast_scandir(path, exts, recursive=recursive) |
|
subfolders.extend(sf) |
|
files.extend(f) |
|
|
|
return subfolders, files |
|
|
|
|
|
def download_file( |
|
source, |
|
dest, |
|
unpack=False, |
|
dest_unpack=None, |
|
replace_existing=False, |
|
write_permissions=False, |
|
): |
|
"""Downloads the file from the given source and saves it in the given |
|
destination path. |
|
Arguments |
|
--------- |
|
source : path or url |
|
Path of the source file. If the source is an URL, it downloads it from |
|
the web. |
|
dest : path |
|
Destination path. |
|
unpack : bool |
|
If True, it unpacks the data in the dest folder. |
|
dest_unpack: path |
|
Path where to store the unpacked dataset |
|
replace_existing : bool |
|
If True, replaces the existing files. |
|
write_permissions: bool |
|
When set to True, all the files in the dest_unpack directory will be granted write permissions. |
|
This option is active only when unpack=True. |
|
""" |
|
class DownloadProgressBar(tqdm): |
|
"""DownloadProgressBar class.""" |
|
|
|
def update_to(self, b=1, bsize=1, tsize=None): |
|
"""Needed to support multigpu training.""" |
|
if tsize is not None: |
|
self.total = tsize |
|
self.update(b * bsize - self.n) |
|
|
|
|
|
dest_dir = pathlib.Path(dest).resolve().parent |
|
dest_dir.mkdir(parents=True, exist_ok=True) |
|
if "http" not in source: |
|
shutil.copyfile(source, dest) |
|
|
|
elif not os.path.isfile(dest) or ( |
|
os.path.isfile(dest) and replace_existing |
|
): |
|
print(f"Downloading {source} to {dest}") |
|
with DownloadProgressBar( |
|
unit="B", |
|
unit_scale=True, |
|
miniters=1, |
|
desc=source.split("/")[-1], |
|
) as t: |
|
urllib.request.urlretrieve( |
|
source, filename=dest, reporthook=t.update_to |
|
) |
|
else: |
|
print(f"{dest} exists. Skipping download") |
|
|
|
|
|
if unpack: |
|
if dest_unpack is None: |
|
dest_unpack = os.path.dirname(dest) |
|
print(f"Extracting {dest} to {dest_unpack}") |
|
|
|
if ( |
|
source.endswith(".tar.gz") |
|
or source.endswith(".tgz") |
|
or source.endswith(".gz") |
|
): |
|
out = dest.replace(".gz", "") |
|
with gzip.open(dest, "rb") as f_in: |
|
with open(out, "wb") as f_out: |
|
shutil.copyfileobj(f_in, f_out) |
|
else: |
|
shutil.unpack_archive(dest, dest_unpack) |
|
if write_permissions: |
|
set_writing_permissions(dest_unpack) |
|
|
|
|
|
def set_writing_permissions(folder_path): |
|
""" |
|
This function sets user writing permissions to all the files in the given folder. |
|
Arguments |
|
--------- |
|
folder_path : folder |
|
Folder whose files will be granted write permissions. |
|
""" |
|
for root, dirs, files in os.walk(folder_path): |
|
for file_name in files: |
|
file_path = os.path.join(root, file_name) |
|
|
|
os.chmod(file_path, 0o666) |