File size: 13,895 Bytes
6e5cc8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import warnings

warnings.filterwarnings('ignore', category=DeprecationWarning)

import os

os.environ['MKL_SERVICE_FORCE_INTEL'] = '1'
os.environ['MUJOCO_GL'] = 'egl'

from pathlib import Path
import hydra
import numpy as np
import torch
from dm_env import specs

import dmc
import utils
from logger import Logger
from numpy_replay_buffer import EfficientReplayBuffer
from video import TrainVideoRecorder, VideoRecorder
from utils import load_offline_dataset_into_buffer

torch.backends.cudnn.benchmark = True


def make_agent(obs_spec, action_spec, cfg):
    cfg.obs_shape = obs_spec.shape
    cfg.action_shape = action_spec.shape
    return hydra.utils.instantiate(cfg)


class Workspace:
    def __init__(self, cfg):
        self.work_dir = Path.cwd()
        print(f'workspace: {self.work_dir}')

        self.cfg = cfg
        utils.set_seed_everywhere(cfg.seed)
        self.device = torch.device(cfg.device)
        self.setup()

        self.agent = make_agent(self.train_env.observation_spec(),
                                self.train_env.action_spec(),
                                self.cfg.agent)
        self.timer = utils.Timer()
        self._global_step = 0
        self._global_episode = 0

    def setup(self):
        # create logger
        self.logger = Logger(self.work_dir, use_tb=self.cfg.use_tb, offline=self.cfg.offline,
                             distracting_eval=self.cfg.eval_on_distracting, multitask_eval=self.cfg.eval_on_multitask)
        # create envs
        self.train_env = dmc.make(self.cfg.task_name, self.cfg.frame_stack,
                                  self.cfg.action_repeat, self.cfg.seed, self.cfg.distracting_mode)
        self.eval_env = dmc.make(self.cfg.task_name, self.cfg.frame_stack,
                                 self.cfg.action_repeat, self.cfg.seed, self.cfg.distracting_mode)
        # create replay buffer
        data_specs = (self.train_env.observation_spec(),
                      self.train_env.action_spec(),
                      specs.Array((1,), np.float32, 'reward'),
                      specs.Array((1,), np.float32, 'discount'))

        self.replay_buffer = EfficientReplayBuffer(self.cfg.replay_buffer_size,
                                                   self.cfg.batch_size,
                                                   self.cfg.nstep,
                                                   self.cfg.discount,
                                                   self.cfg.frame_stack,
                                                   data_specs)

        self.video_recorder = VideoRecorder(
            self.work_dir if self.cfg.save_video else None)
        self.train_video_recorder = TrainVideoRecorder(
            self.work_dir if self.cfg.save_train_video else None)

        self.eval_on_distracting = self.cfg.eval_on_distracting
        self.eval_on_multitask = self.cfg.eval_on_multitask

    @property
    def global_step(self):
        return self._global_step

    @property
    def global_episode(self):
        return self._global_episode

    @property
    def global_frame(self):
        return self.global_step * self.cfg.action_repeat

    def eval(self):
        step, episode, total_reward = 0, 0, 0
        eval_until_episode = utils.Until(self.cfg.num_eval_episodes)

        while eval_until_episode(episode):
            time_step = self.eval_env.reset()
            self.video_recorder.init(self.eval_env, enabled=(episode == 0))
            while not time_step.last():
                with torch.no_grad(), utils.eval_mode(self.agent):
                    action = self.agent.act(time_step.observation,
                                            self.global_step,
                                            eval_mode=True)
                time_step = self.eval_env.step(action)
                self.video_recorder.record(self.eval_env)
                total_reward += time_step.reward
                step += 1

            episode += 1
            self.video_recorder.save(f'{self.global_frame}.mp4')

        with self.logger.log_and_dump_ctx(self.global_frame, ty='eval') as log:
            log('episode_reward', total_reward / episode)
            log('episode_length', step * self.cfg.action_repeat / episode)
            log('episode', self.global_episode)
            log('step', self.global_step)

    def eval_distracting(self, record_video):
        distraction_modes = ['easy', 'medium', 'hard', 'fixed_easy', 'fixed_medium', 'fixed_hard']
        if not hasattr(self, 'distracting_envs'):
            self.distracting_envs = []
            for distraction_mode in distraction_modes:
                env = dmc.make(self.cfg.task_name, self.cfg.frame_stack,
                               self.cfg.action_repeat, self.cfg.seed, distracting_mode=distraction_mode)
                self.distracting_envs.append(env)
        for env, env_name in zip(self.distracting_envs, distraction_modes):
            self.eval_single_env(env, env_name, record_video)

    def eval_multitask(self, record_video):
        multitask_modes = [f'len_{i}' for i in range(1, 11, 1)]
        if not hasattr(self, 'multitask_envs'):
            self.multitask_envs = []
            for multitask_mode in multitask_modes:
                env = dmc.make(self.cfg.task_name, self.cfg.frame_stack,
                               self.cfg.action_repeat, self.cfg.seed, multitask_mode=multitask_mode)
                self.multitask_envs.append(env)
        for env, env_name in zip(self.multitask_envs, multitask_modes):
            self.eval_single_env(env, env_name, record_video)

    def eval_single_env(self, env, env_name, save_video):
        step, episode, total_reward = 0, 0, 0
        eval_until_episode = utils.Until(self.cfg.num_eval_episodes)

        while eval_until_episode(episode):
            time_step = env.reset()
            self.video_recorder.init(env, enabled=((episode == 0) and save_video))
            while not time_step.last():
                with torch.no_grad(), utils.eval_mode(self.agent):
                    action = self.agent.act(time_step.observation,
                                            self.global_step,
                                            eval_mode=True)
                time_step = env.step(action)
                self.video_recorder.record(env)
                total_reward += time_step.reward
                step += 1

            episode += 1
            self.video_recorder.save(f'{env_name}_{self.global_frame}.mp4')

        self.logger.log(f'eval/{env_name}_episode_reward', total_reward / episode, self.global_frame)

    def train(self):
        # predicates
        train_until_step = utils.Until(self.cfg.num_train_frames,
                                       self.cfg.action_repeat)
        seed_until_step = utils.Until(self.cfg.num_seed_frames,
                                      self.cfg.action_repeat)
        eval_every_step = utils.Every(self.cfg.eval_every_frames,
                                      self.cfg.action_repeat)
        # only in distracting evaluation mode
        eval_save_vid_every_step = utils.Every(self.cfg.eval_save_vid_every_step,
                                               self.cfg.action_repeat)

        episode_step, episode_reward = 0, 0
        time_step = self.train_env.reset()
        self.replay_storage.add(time_step)
        self.train_video_recorder.init(time_step.observation)
        metrics = None
        while train_until_step(self.global_step):
            if time_step.last():
                self._global_episode += 1
                self.train_video_recorder.save(f'{self.global_frame}.mp4')
                # wait until all the metrics schema is populated
                if metrics is not None:
                    # log stats
                    elapsed_time, total_time = self.timer.reset()
                    episode_frame = episode_step * self.cfg.action_repeat
                    with self.logger.log_and_dump_ctx(self.global_frame,
                                                      ty='train') as log:
                        log('fps', episode_frame / elapsed_time)
                        log('total_time', total_time)
                        log('episode_reward', episode_reward)
                        log('episode_length', episode_frame)
                        log('episode', self.global_episode)
                        log('buffer_size', len(self.replay_storage))
                        log('step', self.global_step)

                # reset env
                time_step = self.train_env.reset()
                self.replay_storage.add(time_step)
                self.train_video_recorder.init(time_step.observation)
                # try to save snapshot
                if self.cfg.save_snapshot:
                    self.save_snapshot()
                episode_step = 0
                episode_reward = 0

            # try to evaluate
            if eval_every_step(self.global_step):
                self.logger.log('eval_total_time', self.timer.total_time(),
                                self.global_frame)
                if self.eval_on_distracting:
                    self.eval_distracting(eval_save_vid_every_step(self.global_step))
                if self.eval_on_multitask:
                    self.eval_multitask(eval_save_vid_every_step(self.global_step))
                self.eval()

            # sample action
            with torch.no_grad(), utils.eval_mode(self.agent):
                action = self.agent.act(time_step.observation,
                                        self.global_step,
                                        eval_mode=False)

            # try to update the agent
            if not seed_until_step(self.global_step):
                metrics = self.agent.update(self.replay_iter, self.global_step)
                self.logger.log_metrics(metrics, self.global_frame, ty='train')

            # take env step
            time_step = self.train_env.step(action)
            episode_reward += time_step.reward
            self.replay_storage.add(time_step)
            self.train_video_recorder.record(time_step.observation)
            episode_step += 1
            self._global_step += 1

    def train_offline(self, offline_dir):
        # Open dataset, load as memory buffer
        load_offline_dataset_into_buffer(Path(offline_dir), self.replay_buffer, self.cfg.frame_stack,
                                         self.cfg.replay_buffer_size)

        if self.replay_buffer.index == -1:
            raise ValueError('No offline data loaded, check directory.')

        # predicates
        train_until_step = utils.Until(self.cfg.num_train_frames, 1)
        eval_every_step = utils.Every(self.cfg.eval_every_frames, 1)
        show_train_stats_every_step = utils.Every(self.cfg.show_train_stats_every_frames, 1)
        # only in distracting evaluation mode
        eval_save_vid_every_step = utils.Every(self.cfg.eval_save_vid_every_step,
                                               self.cfg.action_repeat)

        metrics = None
        step = 0
        while train_until_step(self.global_step):
            if show_train_stats_every_step(self.global_step):
                # wait until all the metrics schema is populated
                if metrics is not None:
                    # log stats
                    elapsed_time, total_time = self.timer.reset()
                    with self.logger.log_and_dump_ctx(self.global_frame,
                                                      ty='train') as log:
                        log('fps', step / elapsed_time)
                        log('total_time', total_time)
                        log('buffer_size', len(self.replay_buffer))
                        log('step', self.global_step)
                    step = 0
                # try to save snapshot
                if self.cfg.save_snapshot:
                    self.save_snapshot()
            step += 1
            # try to evaluate
            if eval_every_step(self.global_step):
                self.logger.log('eval_total_time', self.timer.total_time(),
                                self.global_frame)
                if self.eval_on_distracting:
                    self.eval_distracting(eval_save_vid_every_step(self.global_step))
                if self.eval_on_multitask:
                    self.eval_multitask(eval_save_vid_every_step(self.global_step))
                self.eval()

            # try to update the agent
            metrics = self.agent.update(self.replay_buffer, self.global_step)
            if show_train_stats_every_step(self.global_step):
                self.logger.log_metrics(metrics, self.global_frame, ty='train')

            self._global_step += 1

    def save_snapshot(self):
        snapshot = self.work_dir / 'snapshot.pt'
        keys_to_save = ['agent', 'timer', '_global_step', '_global_episode']
        payload = {k: self.__dict__[k] for k in keys_to_save}
        with snapshot.open('wb') as f:
            torch.save(payload, f)

    def load_snapshot(self):
        snapshot = self.work_dir / 'snapshot.pt'
        with snapshot.open('rb') as f:
            payload = torch.load(f)
        for k, v in payload.items():
            self.__dict__[k] = v


@hydra.main(config_path='cfgs', config_name='config')
def main(cfg):
    from train import Workspace as W
    root_dir = Path.cwd()
    workspace = W(cfg)
    print(cfg)
    snapshot = root_dir / 'snapshot.pt'
    if snapshot.exists():
        print(f'resuming: {snapshot}')
        workspace.load_snapshot()
    if cfg.offline:
        workspace.train_offline(cfg.offline_dir)
    else:
        workspace.train()


if __name__ == '__main__':
    main()