File size: 8,105 Bytes
6e5cc8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import collections
import functools
import logging
import os
import pathlib
import re
import warnings

try:
    import rich.traceback

    rich.traceback.install()
except ImportError:
    pass

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
logging.getLogger().setLevel('ERROR')
warnings.filterwarnings('ignore', '.*box bound precision lowered.*')

import numpy as np
import ruamel.yaml as yaml

from dreamerv2 import agent
from dreamerv2 import common


def make_env(mode, config, logdir):
    suite, task = config.task.split('_', 1)
    if suite == 'dmc':
        env = common.DMC(
            task, config.action_repeat, config.render_size, config.dmc_camera)
        env = common.NormalizeAction(env)
    elif suite == 'dmcmt':
        env = common.DMCMultitask(
            task, config.action_repeat, config.render_size, config.dmc_camera)
        env = common.NormalizeAction(env)
    elif suite == 'atari':
        env = common.Atari(
            task, config.action_repeat, config.render_size,
            config.atari_grayscale)
        env = common.OneHotAction(env)
    elif suite == 'crafter':
        assert config.action_repeat == 1
        outdir = logdir / 'crafter' if mode == 'train' else None
        reward = bool(['noreward', 'reward'].index(task)) or mode == 'eval'
        env = common.Crafter(outdir, reward)
        env = common.OneHotAction(env)
    else:
        raise NotImplementedError(suite)
    env = common.TimeLimit(env, config.time_limit)
    return env


def main():
    config_path = pathlib.Path('offlinedv2/dreamerv2') / 'configs.yaml'
    configs = yaml.safe_load(config_path.read_text())
    parsed, remaining = common.Flags(configs=['defaults']).parse(known_only=True)
    config = common.Config(configs['defaults'])
    for name in parsed.configs:
        config = config.update(configs[name])
    config = common.Flags(config).parse(remaining)

    logdir = pathlib.Path(config.logdir).expanduser()
    logdir.mkdir(parents=True, exist_ok=True)
    config.save(logdir / 'config.yaml')
    print(config, '\n')
    print('Logdir', logdir)

    import tensorflow as tf
    tf.config.experimental_run_functions_eagerly(not config.jit)
    message = 'No GPU found. To actually train on CPU remove this assert.'
    assert tf.config.experimental.list_physical_devices('GPU'), message
    for gpu in tf.config.experimental.list_physical_devices('GPU'):
        tf.config.experimental.set_memory_growth(gpu, True)
    assert config.precision in (16, 32), config.precision
    if config.precision == 16:
        from tensorflow.keras.mixed_precision import experimental as prec
        prec.set_policy(prec.Policy('mixed_float16'))

    print('Offline Datadir', config.offline_dir)
    train_replay = common.OfflineReplay(list(config.offline_dir), split_val=config.offline_split_val, **config.replay)
    eval_replay = common.Replay(
        logdir / 'eval_episodes',
        capacity=config.replay.capacity // 10,
        minlen=config.dataset.length,
        maxlen=config.dataset.length,
        disable_save=True,
    )
    step = common.Counter(0)
    outputs = [
        common.TerminalOutput(),
        common.JSONLOutput(logdir),
        common.TensorBoardOutput(logdir),
    ]
    logger = common.Logger(step, outputs)
    metrics = collections.defaultdict(list)

    should_video_eval = common.Every(config.eval_every)

    def per_episode(ep, mode):
        length = len(ep['reward']) - 1
        score = float(ep['reward'].astype(np.float64).sum())
        print(f'{mode.title()} episode has {length} steps and return {score:.1f}.')
        logger.scalar(f'{mode}_return', score)
        logger.scalar(f'{mode}_length', length)
        for key, value in ep.items():
            if re.match(config.log_keys_sum, key):
                logger.scalar(f'sum_{mode}_{key}', ep[key].sum())
            if re.match(config.log_keys_mean, key):
                logger.scalar(f'mean_{mode}_{key}', ep[key].mean())
            if re.match(config.log_keys_max, key):
                logger.scalar(f'max_{mode}_{key}', ep[key].max(0).mean())
        # if should_video_eval(step):
        #     for key in config.log_keys_video:
        #         logger.video(f'{mode}_policy_{key}', ep[key])
        replay = dict(train=train_replay, eval=eval_replay)[mode]
        logger.add(replay.stats, prefix=mode)
        logger.write()

    print('Create envs.')
    num_eval_envs = min(config.envs, config.eval_eps)
    if config.envs_parallel == 'none':
        eval_envs = [make_env('eval', config, logdir) for _ in range(num_eval_envs)]
    else:
        make_async_env = lambda mode: common.Async(
            functools.partial(make_env, mode, config, logdir), config.envs_parallel)
        eval_envs = [make_async_env('eval') for _ in range(num_eval_envs)]
    act_space = eval_envs[0].act_space
    obs_space = eval_envs[0].obs_space
    eval_driver = common.Driver(eval_envs)
    eval_driver.on_episode(lambda ep: per_episode(ep, mode='eval'))
    eval_driver.on_episode(eval_replay.add_episode)

    print(f'Precollecting eval steps.')
    random_agent = common.RandomAgent(act_space)
    eval_driver(random_agent, episodes=1)
    eval_driver.reset()

    print('Create agent.')
    train_dataset = iter(train_replay.dataset(**config.offline_model_dataset))
    if config.offline_split_val:
        val_dataset = iter(train_replay.dataset(validation=True, **config.offline_model_dataset))

    agnt = agent.Agent(config, obs_space, act_space, step)
    agnt.train(next(train_dataset))
    eval_policy = lambda *args: agnt.policy(*args, mode='eval')

    if config.offline_model_loaddir != 'none':
        print('Loading model', config.offline_model_loaddir)
        agnt.wm.load(config.offline_model_loaddir)
    else:
        print('Start model training.')
        model_step = common.Counter(0)
        model_logger = common.Logger(model_step, outputs)
        while model_step < config.offline_model_train_steps:
            if config.offline_split_val:
                # Compute model validation loss as average over chunks of data
                val_losses = []
                for _ in range(10):
                    val_loss, _, _, val_mets = agnt.wm.loss(next(val_dataset))
                    val_losses.append(val_loss)
                model_logger.scalar(f'validation_model_loss', np.array(val_losses, np.float64).mean())

            for it in range(100):
                model_step.increment()
                mets = agnt.model_train(next(train_dataset))

                for key, value in mets.items():
                    metrics[key].append(value)

            for name, values in metrics.items():
                model_logger.scalar(name, np.array(values, np.float64).mean())
                metrics[name].clear()
            model_logger.write()

            if model_step % config.offline_model_save_every == 0:
                print('Saving model')
                agnt.wm.save(logdir / f'model_{model_step.value}.pkl')
        agnt.wm.save(logdir / f'final_model.pkl')

    # Begin training
    metrics = collections.defaultdict(list)

    train_dataset = iter(train_replay.dataset(**config.offline_train_dataset))
    eval_dataset = iter(eval_replay.dataset(**config.offline_train_dataset))
    while step < config.steps:
        logger.write()
        print('Start evaluation.')
        if should_video_eval(step):
            logger.add(agnt.report(next(eval_dataset)), prefix='eval')
        eval_driver(eval_policy, episodes=config.eval_eps)

        print('Start training.')
        for it in range(200):
            step.increment()
            mets = agnt.agent_train(next(train_dataset))
            for key, value in mets.items():
                metrics[key].append(value)
        for name, values in metrics.items():
            logger.scalar(name, np.array(values, np.float64).mean())
            metrics[name].clear()

        logger.write(fps=True)
        agnt.save(logdir / 'variables.pkl')

    for env in eval_envs:
        try:
            env.close()
        except Exception:
            pass


if __name__ == '__main__':
    main()