File size: 10,130 Bytes
6e5cc8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import hydra
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import utils
class RandomShiftsAug(nn.Module):
def __init__(self, pad=4):
super().__init__()
self.pad = pad
def forward(self, x):
n, c, h, w = x.size()
assert h == w
padding = tuple([self.pad] * 4)
x = F.pad(x, padding, 'replicate')
eps = 1.0 / (h + 2 * self.pad)
arange = torch.linspace(-1.0 + eps,
1.0 - eps,
h + 2 * self.pad,
device=x.device,
dtype=x.dtype)[:h]
arange = arange.unsqueeze(0).repeat(h, 1).unsqueeze(2)
base_grid = torch.cat([arange, arange.transpose(1, 0)], dim=2)
base_grid = base_grid.unsqueeze(0).repeat(n, 1, 1, 1)
shift = torch.randint(0,
2 * self.pad + 1,
size=(n, 1, 1, 2),
device=x.device,
dtype=x.dtype)
shift *= 2.0 / (h + 2 * self.pad)
grid = base_grid + shift
return F.grid_sample(x,
grid,
padding_mode='zeros',
align_corners=False)
class NoShiftAug(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return x
class Encoder(nn.Module):
def __init__(self, obs_shape):
super().__init__()
assert len(obs_shape) == 3
self.repr_dim = 32 * 35 * 35
self.convnet = nn.Sequential(nn.Conv2d(obs_shape[0], 32, 3, stride=2),
nn.ReLU(), nn.Conv2d(32, 32, 3, stride=1),
nn.ReLU(), nn.Conv2d(32, 32, 3, stride=1),
nn.ReLU(), nn.Conv2d(32, 32, 3, stride=1),
nn.ReLU())
self.apply(utils.weight_init)
def forward(self, obs):
obs = obs / 255.0 - 0.5
h = self.convnet(obs)
h = h.view(h.shape[0], -1)
return h
class Actor(nn.Module):
def __init__(self, repr_dim, action_shape, feature_dim, hidden_dim):
super().__init__()
self.trunk = nn.Sequential(nn.Linear(repr_dim, feature_dim),
nn.LayerNorm(feature_dim), nn.Tanh())
self.policy = nn.Sequential(nn.Linear(feature_dim, hidden_dim),
nn.ReLU(inplace=True),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(inplace=True),
nn.Linear(hidden_dim, action_shape[0]))
self.apply(utils.weight_init)
def forward(self, obs, std):
h = self.trunk(obs)
mu = self.policy(h)
mu = torch.tanh(mu)
std = torch.ones_like(mu) * std
dist = utils.TruncatedNormal(mu, std)
return dist
class Critic(nn.Module):
def __init__(self, repr_dim, action_shape, feature_dim, hidden_dim):
super().__init__()
self.trunk = nn.Sequential(nn.Linear(repr_dim, feature_dim),
nn.LayerNorm(feature_dim), nn.Tanh())
self.Q1 = nn.Sequential(
nn.Linear(feature_dim + action_shape[0], hidden_dim),
nn.ReLU(inplace=True), nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(inplace=True), nn.Linear(hidden_dim, 1))
self.Q2 = nn.Sequential(
nn.Linear(feature_dim + action_shape[0], hidden_dim),
nn.ReLU(inplace=True), nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(inplace=True), nn.Linear(hidden_dim, 1))
self.apply(utils.weight_init)
def forward(self, obs, action):
h = self.trunk(obs)
h_action = torch.cat([h, action], dim=-1)
q1 = self.Q1(h_action)
q2 = self.Q2(h_action)
return q1, q2
class DrQV2Agent:
def __init__(self, obs_shape, action_shape, device, lr, feature_dim,
hidden_dim, critic_target_tau, num_expl_steps,
update_every_steps, stddev_schedule, stddev_clip, use_tb,
offline=False, bc_weight=2.5, augmentation=RandomShiftsAug(pad=4),
use_bc=True):
self.device = device
self.critic_target_tau = critic_target_tau
self.update_every_steps = update_every_steps
self.use_tb = use_tb
self.num_expl_steps = num_expl_steps
self.stddev_schedule = stddev_schedule
self.stddev_clip = stddev_clip
self.offline = offline
self.bc_weight = bc_weight
self.use_bc = use_bc
# models
self.encoder = Encoder(obs_shape).to(device)
self.actor = Actor(self.encoder.repr_dim, action_shape, feature_dim,
hidden_dim).to(device)
self.critic = Critic(self.encoder.repr_dim, action_shape, feature_dim,
hidden_dim).to(device)
self.critic_target = Critic(self.encoder.repr_dim, action_shape,
feature_dim, hidden_dim).to(device)
self.critic_target.load_state_dict(self.critic.state_dict())
# optimizers
self.encoder_opt = torch.optim.Adam(self.encoder.parameters(), lr=lr)
self.actor_opt = torch.optim.Adam(self.actor.parameters(), lr=lr)
self.critic_opt = torch.optim.Adam(self.critic.parameters(), lr=lr)
# data augmentation
self.aug = augmentation
self.train()
self.critic_target.train()
def train(self, training=True):
self.training = training
self.encoder.train(training)
self.actor.train(training)
self.critic.train(training)
def act(self, obs, step, eval_mode):
obs = torch.as_tensor(obs, device=self.device)
obs = self.encoder(obs.unsqueeze(0))
stddev = utils.schedule(self.stddev_schedule, step)
dist = self.actor(obs, stddev)
if eval_mode:
action = dist.mean
else:
action = dist.sample(clip=None)
if step < self.num_expl_steps:
action.uniform_(-1.0, 1.0)
return action.cpu().numpy()[0]
def update_critic(self, obs, action, reward, discount, next_obs, step):
metrics = dict()
with torch.no_grad():
stddev = utils.schedule(self.stddev_schedule, step)
dist = self.actor(next_obs, stddev)
next_action = dist.sample(clip=self.stddev_clip)
target_Q1, target_Q2 = self.critic_target(next_obs, next_action)
target_V = torch.min(target_Q1, target_Q2)
target_Q = reward.float() + (discount * target_V)
Q1, Q2 = self.critic(obs, action)
critic_loss = F.mse_loss(Q1, target_Q) + F.mse_loss(Q2, target_Q)
if self.use_tb:
metrics['critic_target_q'] = target_Q.mean().item()
metrics['critic_q1'] = Q1.mean().item()
metrics['critic_q2'] = Q2.mean().item()
metrics['critic_loss'] = critic_loss.item()
# optimize encoder and critic
self.encoder_opt.zero_grad(set_to_none=True)
self.critic_opt.zero_grad(set_to_none=True)
critic_loss.backward()
self.critic_opt.step()
self.encoder_opt.step()
return metrics
def update_actor(self, obs, step, behavioural_action=None):
metrics = dict()
stddev = utils.schedule(self.stddev_schedule, step)
dist = self.actor(obs, stddev)
action = dist.sample(clip=self.stddev_clip)
log_prob = dist.log_prob(action).sum(-1, keepdim=True)
Q1, Q2 = self.critic(obs, action)
Q = torch.min(Q1, Q2)
actor_policy_improvement_loss = -Q.mean()
actor_loss = actor_policy_improvement_loss
# offline BC Loss
if self.offline:
actor_bc_loss = F.mse_loss(action, behavioural_action)
# Eq. 5 of arXiv:2106.06860
lam = self.bc_weight / Q.detach().abs().mean()
if self.use_bc:
actor_loss = actor_policy_improvement_loss * lam + actor_bc_loss
else:
actor_loss = actor_policy_improvement_loss * lam
# optimize actor
self.actor_opt.zero_grad(set_to_none=True)
actor_loss.backward()
self.actor_opt.step()
if self.use_tb:
metrics['actor_loss'] = actor_policy_improvement_loss.item()
metrics['actor_logprob'] = log_prob.mean().item()
metrics['actor_ent'] = dist.entropy().sum(dim=-1).mean().item()
if self.offline:
metrics['actor_bc_loss'] = actor_bc_loss.item()
return metrics
def update(self, replay_buffer, step):
metrics = dict()
if step % self.update_every_steps != 0:
return metrics
batch = next(replay_buffer)
obs, action, reward, discount, next_obs = utils.to_torch(
batch, self.device)
# augment
obs = self.aug(obs.float())
next_obs = self.aug(next_obs.float())
# encode
obs = self.encoder(obs)
with torch.no_grad():
next_obs = self.encoder(next_obs)
if self.use_tb:
metrics['batch_reward'] = reward.mean().item()
# update critic
metrics.update(
self.update_critic(obs, action, reward, discount, next_obs, step))
# update actor
if self.offline:
metrics.update(self.update_actor(obs.detach(), step, action.detach()))
else:
metrics.update(self.update_actor(obs.detach(), step))
# update critic target
utils.soft_update_params(self.critic, self.critic_target,
self.critic_target_tau)
return metrics
|