File size: 6,805 Bytes
6e5cc8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import random
import re
import time

import numpy as np
import h5py
from collections import deque
import dmc
from dm_env import StepType
from drqbc.numpy_replay_buffer import EfficientReplayBuffer

import torch
import torch.nn as nn
from torch import distributions as pyd
from torch.distributions.utils import _standard_normal


class eval_mode:
    def __init__(self, *models):
        self.models = models

    def __enter__(self):
        self.prev_states = []
        for model in self.models:
            self.prev_states.append(model.training)
            model.train(False)

    def __exit__(self, *args):
        for model, state in zip(self.models, self.prev_states):
            model.train(state)
        return False


def set_seed_everywhere(seed):
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(seed)
    np.random.seed(seed)
    random.seed(seed)


def soft_update_params(net, target_net, tau):
    for param, target_param in zip(net.parameters(), target_net.parameters()):
        target_param.data.copy_(tau * param.data +
                                (1 - tau) * target_param.data)


def to_torch(xs, device):
    return tuple(torch.as_tensor(x, device=device) for x in xs)


def weight_init(m):
    if isinstance(m, nn.Linear):
        nn.init.orthogonal_(m.weight.data)
        if hasattr(m.bias, 'data'):
            m.bias.data.fill_(0.0)
    elif isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d):
        gain = nn.init.calculate_gain('relu')
        nn.init.orthogonal_(m.weight.data, gain)
        if hasattr(m.bias, 'data'):
            m.bias.data.fill_(0.0)


class Until:
    def __init__(self, until, action_repeat=1):
        self._until = until
        self._action_repeat = action_repeat

    def __call__(self, step):
        if self._until is None:
            return True
        until = self._until // self._action_repeat
        return step < until


class Every:
    def __init__(self, every, action_repeat=1):
        self._every = every
        self._action_repeat = action_repeat

    def __call__(self, step):
        if self._every is None:
            return False
        every = self._every // self._action_repeat
        if step % every == 0:
            return True
        return False


class Timer:
    def __init__(self):
        self._start_time = time.time()
        self._last_time = time.time()

    def reset(self):
        elapsed_time = time.time() - self._last_time
        self._last_time = time.time()
        total_time = time.time() - self._start_time
        return elapsed_time, total_time

    def total_time(self):
        return time.time() - self._start_time


class TruncatedNormal(pyd.Normal):
    def __init__(self, loc, scale, low=-1.0, high=1.0, eps=1e-6):
        super().__init__(loc, scale, validate_args=False)
        self.low = low
        self.high = high
        self.eps = eps

    def _clamp(self, x):
        clamped_x = torch.clamp(x, self.low + self.eps, self.high - self.eps)
        x = x - x.detach() + clamped_x.detach()
        return x

    def sample(self, clip=None, sample_shape=torch.Size()):
        shape = self._extended_shape(sample_shape)
        eps = _standard_normal(shape,
                               dtype=self.loc.dtype,
                               device=self.loc.device)
        eps *= self.scale
        if clip is not None:
            eps = torch.clamp(eps, -clip, clip)
        x = self.loc + eps
        return self._clamp(x)


def schedule(schdl, step):
    try:
        return float(schdl)
    except ValueError:
        match = re.match(r'linear\((.+),(.+),(.+)\)', schdl)
        if match:
            init, final, duration = [float(g) for g in match.groups()]
            mix = np.clip(step / duration, 0.0, 1.0)
            return (1.0 - mix) * init + mix * final
        match = re.match(r'step_linear\((.+),(.+),(.+),(.+),(.+)\)', schdl)
        if match:
            init, final1, duration1, final2, duration2 = [
                float(g) for g in match.groups()
            ]
            if step <= duration1:
                mix = np.clip(step / duration1, 0.0, 1.0)
                return (1.0 - mix) * init + mix * final1
            else:
                mix = np.clip((step - duration1) / duration2, 0.0, 1.0)
                return (1.0 - mix) * final1 + mix * final2
    raise NotImplementedError(schdl)


step_type_lookup = {
    0: StepType.FIRST,
    1: StepType.MID,
    2: StepType.LAST
}


def load_offline_dataset_into_buffer(offline_dir, replay_buffer, frame_stack, replay_buffer_size):
    filenames = sorted(offline_dir.glob('*.hdf5'))
    num_steps = 0
    for filename in filenames:
        try:
            episodes = h5py.File(filename, 'r')
            episodes = {k: episodes[k][:] for k in episodes.keys()}
            add_offline_data_to_buffer(episodes, replay_buffer, framestack=frame_stack)
            length = episodes['reward'].shape[0]
            num_steps += length
        except Exception as e:
            print(f'Could not load episode {str(filename)}: {e}')
            continue
        print("Loaded {} offline timesteps so far...".format(int(num_steps)))
        if num_steps >= replay_buffer_size:
            break
    print("Finished, loaded {} timesteps.".format(int(num_steps)))


def add_offline_data_to_buffer(offline_data: dict, replay_buffer: EfficientReplayBuffer, framestack: int = 3):
    offline_data_length = offline_data['reward'].shape[0]
    for v in offline_data.values():
        assert v.shape[0] == offline_data_length
    for idx in range(offline_data_length):
        time_step = get_timestep_from_idx(offline_data, idx)
        if not time_step.first():
            stacked_frames.append(time_step.observation)
            time_step_stack = time_step._replace(observation=np.concatenate(stacked_frames, axis=0))
            replay_buffer.add(time_step_stack)
        else:
            stacked_frames = deque(maxlen=framestack)
            while len(stacked_frames) < framestack:
                stacked_frames.append(time_step.observation)
            time_step_stack = time_step._replace(observation=np.concatenate(stacked_frames, axis=0))
            replay_buffer.add(time_step_stack)


def get_timestep_from_idx(offline_data: dict, idx: int):
    return dmc.ExtendedTimeStep(
        step_type=step_type_lookup[offline_data['step_type'][idx]],
        reward=offline_data['reward'][idx],
        observation=offline_data['observation'][idx],
        discount=offline_data['discount'][idx],
        action=offline_data['action'][idx]
    )