File size: 6,805 Bytes
6e5cc8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import random
import re
import time
import numpy as np
import h5py
from collections import deque
import dmc
from dm_env import StepType
from drqbc.numpy_replay_buffer import EfficientReplayBuffer
import torch
import torch.nn as nn
from torch import distributions as pyd
from torch.distributions.utils import _standard_normal
class eval_mode:
def __init__(self, *models):
self.models = models
def __enter__(self):
self.prev_states = []
for model in self.models:
self.prev_states.append(model.training)
model.train(False)
def __exit__(self, *args):
for model, state in zip(self.models, self.prev_states):
model.train(state)
return False
def set_seed_everywhere(seed):
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
def soft_update_params(net, target_net, tau):
for param, target_param in zip(net.parameters(), target_net.parameters()):
target_param.data.copy_(tau * param.data +
(1 - tau) * target_param.data)
def to_torch(xs, device):
return tuple(torch.as_tensor(x, device=device) for x in xs)
def weight_init(m):
if isinstance(m, nn.Linear):
nn.init.orthogonal_(m.weight.data)
if hasattr(m.bias, 'data'):
m.bias.data.fill_(0.0)
elif isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d):
gain = nn.init.calculate_gain('relu')
nn.init.orthogonal_(m.weight.data, gain)
if hasattr(m.bias, 'data'):
m.bias.data.fill_(0.0)
class Until:
def __init__(self, until, action_repeat=1):
self._until = until
self._action_repeat = action_repeat
def __call__(self, step):
if self._until is None:
return True
until = self._until // self._action_repeat
return step < until
class Every:
def __init__(self, every, action_repeat=1):
self._every = every
self._action_repeat = action_repeat
def __call__(self, step):
if self._every is None:
return False
every = self._every // self._action_repeat
if step % every == 0:
return True
return False
class Timer:
def __init__(self):
self._start_time = time.time()
self._last_time = time.time()
def reset(self):
elapsed_time = time.time() - self._last_time
self._last_time = time.time()
total_time = time.time() - self._start_time
return elapsed_time, total_time
def total_time(self):
return time.time() - self._start_time
class TruncatedNormal(pyd.Normal):
def __init__(self, loc, scale, low=-1.0, high=1.0, eps=1e-6):
super().__init__(loc, scale, validate_args=False)
self.low = low
self.high = high
self.eps = eps
def _clamp(self, x):
clamped_x = torch.clamp(x, self.low + self.eps, self.high - self.eps)
x = x - x.detach() + clamped_x.detach()
return x
def sample(self, clip=None, sample_shape=torch.Size()):
shape = self._extended_shape(sample_shape)
eps = _standard_normal(shape,
dtype=self.loc.dtype,
device=self.loc.device)
eps *= self.scale
if clip is not None:
eps = torch.clamp(eps, -clip, clip)
x = self.loc + eps
return self._clamp(x)
def schedule(schdl, step):
try:
return float(schdl)
except ValueError:
match = re.match(r'linear\((.+),(.+),(.+)\)', schdl)
if match:
init, final, duration = [float(g) for g in match.groups()]
mix = np.clip(step / duration, 0.0, 1.0)
return (1.0 - mix) * init + mix * final
match = re.match(r'step_linear\((.+),(.+),(.+),(.+),(.+)\)', schdl)
if match:
init, final1, duration1, final2, duration2 = [
float(g) for g in match.groups()
]
if step <= duration1:
mix = np.clip(step / duration1, 0.0, 1.0)
return (1.0 - mix) * init + mix * final1
else:
mix = np.clip((step - duration1) / duration2, 0.0, 1.0)
return (1.0 - mix) * final1 + mix * final2
raise NotImplementedError(schdl)
step_type_lookup = {
0: StepType.FIRST,
1: StepType.MID,
2: StepType.LAST
}
def load_offline_dataset_into_buffer(offline_dir, replay_buffer, frame_stack, replay_buffer_size):
filenames = sorted(offline_dir.glob('*.hdf5'))
num_steps = 0
for filename in filenames:
try:
episodes = h5py.File(filename, 'r')
episodes = {k: episodes[k][:] for k in episodes.keys()}
add_offline_data_to_buffer(episodes, replay_buffer, framestack=frame_stack)
length = episodes['reward'].shape[0]
num_steps += length
except Exception as e:
print(f'Could not load episode {str(filename)}: {e}')
continue
print("Loaded {} offline timesteps so far...".format(int(num_steps)))
if num_steps >= replay_buffer_size:
break
print("Finished, loaded {} timesteps.".format(int(num_steps)))
def add_offline_data_to_buffer(offline_data: dict, replay_buffer: EfficientReplayBuffer, framestack: int = 3):
offline_data_length = offline_data['reward'].shape[0]
for v in offline_data.values():
assert v.shape[0] == offline_data_length
for idx in range(offline_data_length):
time_step = get_timestep_from_idx(offline_data, idx)
if not time_step.first():
stacked_frames.append(time_step.observation)
time_step_stack = time_step._replace(observation=np.concatenate(stacked_frames, axis=0))
replay_buffer.add(time_step_stack)
else:
stacked_frames = deque(maxlen=framestack)
while len(stacked_frames) < framestack:
stacked_frames.append(time_step.observation)
time_step_stack = time_step._replace(observation=np.concatenate(stacked_frames, axis=0))
replay_buffer.add(time_step_stack)
def get_timestep_from_idx(offline_data: dict, idx: int):
return dmc.ExtendedTimeStep(
step_type=step_type_lookup[offline_data['step_type'][idx]],
reward=offline_data['reward'][idx],
observation=offline_data['observation'][idx],
discount=offline_data['discount'][idx],
action=offline_data['action'][idx]
)
|