vd4rl / baselines /lompo /tools.py
conglu's picture
upload code
6e5cc8b
raw
history blame
9.38 kB
import copy
import datetime
import io
import pathlib
import pickle
import uuid
import numpy as np
import tensorflow as tf
import tensorflow.compat.v1 as tf1
from tensorflow_probability import distributions as tfd
class AttrDict(dict):
__setattr__ = dict.__setitem__
__getattr__ = dict.__getitem__
class Module(tf.Module):
def save(self, filename):
values = tf.nest.map_structure(lambda x: x.numpy(), self.variables)
with pathlib.Path(filename).open('wb') as f:
pickle.dump(values, f)
def load(self, filename):
with pathlib.Path(filename).open('rb') as f:
values = pickle.load(f)
tf.nest.map_structure(lambda x, y: x.assign(y), self.variables, values)
def get(self, name, ctor, *args, **kwargs):
# Create or get layer by name to avoid mentioning it in the constructor.
if not hasattr(self, '_modules'):
self._modules = {}
if name not in self._modules:
self._modules[name] = ctor(*args, **kwargs)
return self._modules[name]
def video_summary(name, video, step=None, fps=20):
name = name if isinstance(name, str) else name.decode('utf-8')
if np.issubdtype(video.dtype, np.floating):
video = np.clip(255 * video, 0, 255).astype(np.uint8)
B, T, H, W, C = video.shape
try:
frames = video.transpose((1, 2, 0, 3, 4)).reshape((T, H, B * W, C))
summary = tf1.Summary()
image = tf1.Summary.Image(height=B * H, width=T * W, colorspace=C)
image.encoded_image_string = encode_gif(frames, fps)
summary.value.add(tag=name + '/gif', image=image)
tf.summary.experimental.write_raw_pb(summary.SerializeToString(), step)
except (IOError, OSError) as e:
print('GIF summaries require ffmpeg in $PATH.', e)
frames = video.transpose((0, 2, 1, 3, 4)).reshape((1, B * H, T * W, C))
tf.summary.image(name + '/grid', frames, step)
def encode_gif(frames, fps):
from subprocess import Popen, PIPE
h, w, c = frames[0].shape
pxfmt = {1: 'gray', 3: 'rgb24'}[c]
cmd = ' '.join([
f'ffmpeg -y -f rawvideo -vcodec rawvideo',
f'-r {fps:.02f} -s {w}x{h} -pix_fmt {pxfmt} -i - -filter_complex',
f'[0:v]split[x][z];[z]palettegen[y];[x]fifo[x];[x][y]paletteuse',
f'-r {fps:.02f} -f gif -'])
proc = Popen(cmd.split(' '), stdin=PIPE, stdout=PIPE, stderr=PIPE)
for image in frames:
proc.stdin.write(image.tostring())
out, err = proc.communicate()
if proc.returncode:
raise IOError('\n'.join([' '.join(cmd), err.decode('utf8')]))
del proc
return out
def simulate(agent, envs, steps=0, episodes=0, state=None):
# Initialize or unpack simulation state.
if state is None:
step, episode = 0, 0
done = np.ones(len(envs), np.bool)
length = np.zeros(len(envs), np.int32)
obs = [None] * len(envs)
agent_state = None
else:
step, episode, done, length, obs, agent_state = state
while (steps and step < steps) or (episodes and episode < episodes):
# Reset envs if necessary.
if done.any():
indices = [index for index, d in enumerate(done) if d]
promises = [envs[i].reset(blocking=False) for i in indices]
for index, promise in zip(indices, promises):
obs[index] = promise()
# Step agents.
obs = {k: np.stack([o[k] for o in obs]) for k in obs[0]}
action, agent_state = agent(obs, done, agent_state)
action = np.array(action)
assert len(action) == len(envs)
# Step envs.
promises = [e.step(a, blocking=False) for e, a in zip(envs, action)]
obs, _, done = zip(*[p()[:3] for p in promises])
obs = list(obs)
done = np.stack(done)
episode += int(done.sum())
length += 1
step += (done * length).sum()
length *= (1 - done)
# Return new state to allow resuming the simulation.
return step - steps, episode - episodes, done, length, obs, agent_state
def count_episodes(directory):
filenames = directory.glob('*.npz')
lengths = [int(n.stem.rsplit('-', 1)[-1]) - 1 for n in filenames]
episodes, steps = len(lengths), sum(lengths)
return episodes, steps
def save_episodes(directory, episodes):
directory = pathlib.Path(directory).expanduser()
directory.mkdir(parents=True, exist_ok=True)
timestamp = datetime.datetime.now().strftime('%Y%m%dT%H%M%S')
for episode in episodes:
identifier = str(uuid.uuid4().hex)
length = len(episode['reward'])
filename = directory / f'{timestamp}-{identifier}-{length}.npz'
with io.BytesIO() as f1:
np.savez_compressed(f1, **episode)
f1.seek(0)
with filename.open('wb') as f2:
f2.write(f1.read())
def load_episodes(directory, rescan, length=None, balance=False, seed=0, load_episodes=1000):
directory = pathlib.Path(directory).expanduser()
random = np.random.RandomState(seed)
filenames = list(directory.glob('*.npz'))
load_episodes = min(len(filenames), load_episodes)
if load_episodes is None:
load_episodes = int(count_episodes(directory)[0] / 20)
while True:
cache = {}
for filename in random.choice(list(directory.glob('*.npz')),
load_episodes,
replace=False):
try:
with filename.open('rb') as f:
episode = np.load(f)
episode = {k: episode[k] for k in episode.keys() if k not in ['image_128']}
# episode['reward'] = copy.deepcopy(episode['success'])
if 'discount' not in episode:
episode['discount'] = np.where(episode['is_terminal'], 0., 1.)
except Exception as e:
print(f'Could not load episode: {e}')
continue
cache[filename] = episode
keys = list(cache.keys())
for index in random.choice(len(keys), rescan):
episode = copy.deepcopy(cache[keys[index]])
if length:
total = len(next(iter(episode.values())))
available = total - length
if available < 0:
for key in episode.keys():
shape = episode[key].shape
episode[key] = np.concatenate([episode[key],
np.zeros([abs(available)] + list(shape[1:]))],
axis=0)
episode['mask'] = np.ones(length)
episode['mask'][available:] = 0.0
elif available > 0:
if balance:
index = min(random.randint(0, total), available)
else:
index = int(random.randint(0, available))
episode = {k: v[index: index + length] for k, v in episode.items()}
episode['mask'] = np.ones(length)
else:
episode['mask'] = np.ones_like(episode['reward'])
else:
episode['mask'] = np.ones_like(episode['reward'])
yield episode
class Adam(tf.Module):
def __init__(self, name, modules, lr, clip=None, wd=None, wdpattern=r'.*'):
self._name = name
self._modules = modules
self._clip = clip
self._wd = wd
self._wdpattern = wdpattern
self._opt = tf.optimizers.Adam(lr)
@property
def variables(self):
return self._opt.variables()
def __call__(self, tape, loss):
variables = [module.variables for module in self._modules]
self._variables = tf.nest.flatten(variables)
assert len(loss.shape) == 0, loss.shape
grads = tape.gradient(loss, self._variables)
norm = tf.linalg.global_norm(grads)
if self._clip:
grads, _ = tf.clip_by_global_norm(grads, self._clip, norm)
self._opt.apply_gradients(zip(grads, self._variables))
return norm
def args_type(default):
if isinstance(default, bool):
return lambda x: bool(['False', 'True'].index(x))
if isinstance(default, int):
return lambda x: float(x) if ('e' in x or '.' in x) else int(x)
if isinstance(default, pathlib.Path):
return lambda x: pathlib.Path(x).expanduser()
return type(default)
def static_scan(fn, inputs, start, reverse=False):
last = start
outputs = [[] for _ in tf.nest.flatten(start)]
indices = range(len(tf.nest.flatten(inputs)[0]))
if reverse:
indices = reversed(indices)
for index in indices:
inp = tf.nest.map_structure(lambda x: x[index], inputs)
last = fn(last, inp)
[o.append(l) for o, l in zip(outputs, tf.nest.flatten(last))]
if reverse:
outputs = [list(reversed(x)) for x in outputs]
outputs = [tf.stack(x, 0) for x in outputs]
return tf.nest.pack_sequence_as(start, outputs)
def _mnd_sample(self, sample_shape=(), seed=None, name='sample'):
return tf.random.normal(
tuple(sample_shape) + tuple(self.event_shape),
self.mean(), self.stddev(), self.dtype, seed, name)
tfd.MultivariateNormalDiag.sample = _mnd_sample