|
|
|
|
|
|
|
|
|
import csv |
|
import datetime |
|
from collections import defaultdict |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from termcolor import colored |
|
from torch.utils.tensorboard import SummaryWriter |
|
|
|
COMMON_TRAIN_FORMAT = [('frame', 'F', 'int'), ('step', 'S', 'int'), |
|
('episode', 'E', 'int'), ('episode_length', 'L', 'int'), |
|
('episode_reward', 'R', 'float'), |
|
('buffer_size', 'BS', 'int'), ('fps', 'FPS', 'float'), |
|
('total_time', 'T', 'time')] |
|
|
|
OFFLINE_TRAIN_FORMAT = [('step', 'S', 'int'), ('buffer_size', 'BS', 'int'), |
|
('fps', 'FPS', 'float'), ('total_time', 'T', 'time')] |
|
|
|
COMMON_EVAL_FORMAT = [('frame', 'F', 'int'), ('step', 'S', 'int'), |
|
('episode', 'E', 'int'), ('episode_length', 'L', 'int'), |
|
('episode_reward', 'R', 'float'), |
|
('total_time', 'T', 'time')] |
|
|
|
DISTRACTING_EVAL_FORMAT = [('frame', 'F', 'int'), ('step', 'S', 'int'), |
|
('episode', 'E', 'int'), ('episode_length', 'L', 'int'), |
|
('episode_reward', 'R', 'float'), |
|
('easy_episode_reward', 'EER', 'float'), |
|
('medium_episode_reward', 'MER', 'float'), |
|
('hard_episode_reward', 'HER', 'float'), |
|
('fixed_easy_episode_reward', 'FEER', 'float'), |
|
('fixed_medium_episode_reward', 'FMER', 'float'), |
|
('fixed_hard_episode_reward', 'FHER', 'float'), |
|
('total_time', 'T', 'time')] |
|
|
|
MULTITASK_EVAL_FORMAT = [('frame', 'F', 'int'), ('step', 'S', 'int'), |
|
('episode', 'E', 'int'), ('episode_length', 'L', 'int'), |
|
('episode_reward', 'R', 'float'), |
|
('len1_episode_reward', 'R1', 'float'), |
|
('len2_episode_reward', 'R2', 'float'), |
|
('len3_episode_reward', 'R3', 'float'), |
|
('len4_episode_reward', 'R4', 'float'), |
|
('len5_episode_reward', 'R5', 'float'), |
|
('len6_episode_reward', 'R6', 'float'), |
|
('len7_episode_reward', 'R7', 'float'), |
|
('len8_episode_reward', 'R8', 'float'), |
|
('len9_episode_reward', 'R9', 'float'), |
|
('len10_episode_reward', 'R10', 'float'), |
|
('total_time', 'T', 'time')] |
|
|
|
|
|
class AverageMeter(object): |
|
def __init__(self): |
|
self._sum = 0 |
|
self._count = 0 |
|
|
|
def update(self, value, n=1): |
|
self._sum += value |
|
self._count += n |
|
|
|
def value(self): |
|
return self._sum / max(1, self._count) |
|
|
|
|
|
class MetersGroup(object): |
|
def __init__(self, csv_file_name, formating): |
|
self._csv_file_name = csv_file_name |
|
self._formating = formating |
|
self._meters = defaultdict(AverageMeter) |
|
self._csv_file = None |
|
self._csv_writer = None |
|
|
|
def log(self, key, value, n=1): |
|
self._meters[key].update(value, n) |
|
|
|
def _prime_meters(self): |
|
data = dict() |
|
for key, meter in self._meters.items(): |
|
if key.startswith('train'): |
|
key = key[len('train') + 1:] |
|
else: |
|
key = key[len('eval') + 1:] |
|
key = key.replace('/', '_') |
|
data[key] = meter.value() |
|
return data |
|
|
|
def _remove_old_entries(self, data): |
|
rows = [] |
|
with self._csv_file_name.open('r') as f: |
|
reader = csv.DictReader(f) |
|
for row in reader: |
|
if float(row['step']) >= data['step']: |
|
break |
|
rows.append(row) |
|
with self._csv_file_name.open('w') as f: |
|
writer = csv.DictWriter(f, |
|
fieldnames=sorted(data.keys()), |
|
restval=0.0) |
|
writer.writeheader() |
|
for row in rows: |
|
writer.writerow(row) |
|
|
|
def _dump_to_csv(self, data): |
|
if self._csv_writer is None: |
|
should_write_header = True |
|
if self._csv_file_name.exists(): |
|
self._remove_old_entries(data) |
|
should_write_header = False |
|
|
|
self._csv_file = self._csv_file_name.open('a') |
|
self._csv_writer = csv.DictWriter(self._csv_file, |
|
fieldnames=sorted(data.keys()), |
|
restval=0.0) |
|
if should_write_header: |
|
self._csv_writer.writeheader() |
|
|
|
self._csv_writer.writerow(data) |
|
self._csv_file.flush() |
|
|
|
def _format(self, key, value, ty): |
|
if ty == 'int': |
|
value = int(value) |
|
return f'{key}: {value}' |
|
elif ty == 'float': |
|
return f'{key}: {value:.04f}' |
|
elif ty == 'time': |
|
value = str(datetime.timedelta(seconds=int(value))) |
|
return f'{key}: {value}' |
|
else: |
|
raise f'invalid format type: {ty}' |
|
|
|
def _dump_to_console(self, data, prefix): |
|
prefix = colored(prefix, 'yellow' if prefix == 'train' else 'green') |
|
pieces = [f'| {prefix: <14}'] |
|
for key, disp_key, ty in self._formating: |
|
value = data.get(key, 0) |
|
pieces.append(self._format(disp_key, value, ty)) |
|
print(' | '.join(pieces)) |
|
|
|
def dump(self, step, prefix): |
|
if len(self._meters) == 0: |
|
return |
|
data = self._prime_meters() |
|
if 'frame' in data: |
|
data['frame'] = step |
|
self._dump_to_csv(data) |
|
self._dump_to_console(data, prefix) |
|
self._meters.clear() |
|
|
|
|
|
class Logger(object): |
|
def __init__(self, log_dir, use_tb, offline=False, distracting_eval=False, multitask_eval=False): |
|
self._log_dir = log_dir |
|
train_formatting = OFFLINE_TRAIN_FORMAT if offline else COMMON_TRAIN_FORMAT |
|
if distracting_eval: |
|
eval_formatting = DISTRACTING_EVAL_FORMAT |
|
elif multitask_eval: |
|
eval_formatting = MULTITASK_EVAL_FORMAT |
|
else: |
|
eval_formatting = COMMON_EVAL_FORMAT |
|
self._train_mg = MetersGroup(log_dir / 'train.csv', |
|
formating=train_formatting) |
|
self._eval_mg = MetersGroup(log_dir / 'eval.csv', |
|
formating=eval_formatting) |
|
if use_tb: |
|
self._sw = SummaryWriter(str(log_dir / 'tb')) |
|
else: |
|
self._sw = None |
|
|
|
def _try_sw_log(self, key, value, step): |
|
if self._sw is not None: |
|
self._sw.add_scalar(key, value, step) |
|
|
|
def log(self, key, value, step): |
|
assert key.startswith('train') or key.startswith('eval') |
|
if type(value) == torch.Tensor: |
|
value = value.item() |
|
self._try_sw_log(key, value, step) |
|
mg = self._train_mg if key.startswith('train') else self._eval_mg |
|
mg.log(key, value) |
|
|
|
def log_metrics(self, metrics, step, ty): |
|
for key, value in metrics.items(): |
|
self.log(f'{ty}/{key}', value, step) |
|
|
|
def dump(self, step, ty=None): |
|
if ty is None or ty == 'eval': |
|
self._eval_mg.dump(step, 'eval') |
|
if ty is None or ty == 'train': |
|
self._train_mg.dump(step, 'train') |
|
|
|
def log_and_dump_ctx(self, step, ty): |
|
return LogAndDumpCtx(self, step, ty) |
|
|
|
|
|
class LogAndDumpCtx: |
|
def __init__(self, logger, step, ty): |
|
self._logger = logger |
|
self._step = step |
|
self._ty = ty |
|
|
|
def __enter__(self): |
|
return self |
|
|
|
def __call__(self, key, value): |
|
self._logger.log(f'{self._ty}/{key}', value, self._step) |
|
|
|
def __exit__(self, *args): |
|
self._logger.dump(self._step, self._ty) |
|
|