import numpy as np import tensorflow as tf from tensorflow.keras import layers as tfkl from tensorflow_probability import distributions as tfd from tensorflow.keras.mixed_precision import experimental as prec from . import tools class RSSME(tools.Module): def __init__(self, stoch=30, deter=200, hidden=200, num_models=7, act=tf.nn.elu): super().__init__() self._activation = act self._stoch_size = stoch self._deter_size = deter self._hidden_size = hidden self._cell = tfkl.GRUCell(self._deter_size) self._k = num_models def initial(self, batch_size): dtype = prec.global_policy().compute_dtype return dict( mean=tf.zeros([batch_size, self._stoch_size], dtype), std=tf.zeros([batch_size, self._stoch_size], dtype), stoch=tf.zeros([batch_size, self._stoch_size], dtype), deter=self._cell.get_initial_state(None, batch_size, dtype)) def observe(self, embed, action, state=None): if state is None: state = self.initial(tf.shape(action)[0]) embed = tf.transpose(embed, [1, 0, 2]) action = tf.transpose(action, [1, 0, 2]) post, prior = tools.static_scan(lambda prev, inputs: self.obs_step(prev[0], *inputs), (action, embed), (state, state)) post = {k: tf.transpose(v, [1, 0, 2]) for k, v in post.items()} prior = {k: tf.transpose(v, [1, 0, 2]) for k, v in prior.items()} return post, prior def imagine(self, action, state=None): if state is None: state = self.initial(tf.shape(action)[0]) assert isinstance(state, dict), state action = tf.transpose(action, [1, 0, 2]) prior = tools.static_scan(self.img_step, action, state) prior = {k: tf.transpose(v, [1, 0, 2]) for k, v in prior.items()} return prior def get_feat(self, state): return tf.concat([state['stoch'], state['deter']], -1) def get_feat_size(self, state): return self._stoch_size + self._deter_size def get_dist(self, state): return tfd.MultivariateNormalDiag(state['mean'], state['std']) def obs_step(self, prev_state, prev_action, embed): prior = self.img_step(prev_state, prev_action) x = tf.concat([prior['deter'], embed], -1) x = self.get('obs1', tfkl.Dense, self._hidden_size, self._activation)(x) x = self.get('obs2', tfkl.Dense, 2 * self._stoch_size, None)(x) mean, std = tf.split(x, 2, -1) std = tf.nn.softplus(std) + 0.1 stoch = self.get_dist({'mean': mean, 'std': std}).sample() post = {'mean': mean, 'std': std, 'stoch': stoch, 'deter': prior['deter']} return post, prior def img_step(self, prev_state, prev_action, k=None): if k is None: k = np.random.choice(self._k) x = tf.concat([prev_state['stoch'], prev_action], -1) x = self.get('img1', tfkl.Dense, self._hidden_size, self._activation)(x) x, deter = self._cell(x, [prev_state['deter']]) deter = deter[0] # Keras wraps the state in a list. x = self.get('img2_{}'.format(k), tfkl.Dense, self._hidden_size, self._activation)(x) x = self.get('img3_{}'.format(k), tfkl.Dense, 2 * self._stoch_size, None)(x) mean, std = tf.split(x, 2, -1) std = tf.nn.softplus(std) + 0.1 stoch = self.get_dist({'mean': mean, 'std': std}).sample() prior = {'mean': mean, 'std': std, 'stoch': stoch, 'deter': deter} return prior class MultivariateNormalDiag(tools.Module): def __init__(self, hidden_size, latent_size, scale=None): super().__init__() self.latent_size = latent_size self.scale = scale self.dense1 = tf.keras.layers.Dense(hidden_size, activation=tf.nn.leaky_relu) self.dense2 = tf.keras.layers.Dense(hidden_size, activation=tf.nn.leaky_relu) self.output_layer = tf.keras.layers.Dense(2 * latent_size if self.scale is None else latent_size) def __call__(self, *inputs): if len(inputs) > 1: inputs = tf.concat(inputs, axis=-1) else: inputs, = inputs out = self.dense1(inputs) out = self.dense2(out) out = self.output_layer(out) loc = out[..., :self.latent_size] if self.scale is None: assert out.shape[-1] == 2 * self.latent_size scale_diag = tf.nn.softplus(out[..., self.latent_size:]) + 1e-5 else: assert out.shape[-1].value == self.latent_size scale_diag = tf.ones_like(loc) * self.scale return loc, scale_diag class ConstantMultivariateNormalDiag(tools.Module): def __init__(self, latent_size, scale=None): super().__init__() self.latent_size = latent_size self.scale = scale def __call__(self, *inputs): # first input should not have any dimensions after the batch_shape, step_type batch_shape = tf.shape(inputs[0]) # input is only used to infer batch_shape shape = tf.concat([batch_shape, [self.latent_size]], axis=0) loc = tf.zeros(shape) if self.scale is None: scale_diag = tf.ones(shape) else: scale_diag = tf.ones(shape) * self.scale return loc, scale_diag class ConvEncoderLarge(tools.Module): def __init__(self, depth=32, act=tf.nn.relu): self._act = act self._depth = depth def __call__(self, obs): kwargs = dict(strides=2, activation=self._act) x = tf.reshape(obs['image'], (-1,) + tuple(obs['image'].shape[-3:])) x = self.get('h1', tfkl.Conv2D, 1 * self._depth, 4, **kwargs)(x) x = self.get('h2', tfkl.Conv2D, 2 * self._depth, 4, **kwargs)(x) x = self.get('h3', tfkl.Conv2D, 4 * self._depth, 4, **kwargs)(x) x = self.get('h4', tfkl.Conv2D, 8 * self._depth, 4, **kwargs)(x) x = self.get('h5', tfkl.Conv2D, 8 * self._depth, 4, **kwargs)(x) shape = tf.concat([tf.shape(obs['image'])[:-3], [32 * self._depth]], 0) return tf.reshape(x, shape) class ConvDecoderLarge(tools.Module): def __init__(self, depth=32, act=tf.nn.relu, shape=(128, 128, 3)): self._act = act self._depth = depth self._shape = shape def __call__(self, features): kwargs = dict(strides=2, activation=self._act) x = self.get('h1', tfkl.Dense, 32 * self._depth, None)(features) x = tf.reshape(x, [-1, 1, 1, 32 * self._depth]) x = self.get('h2', tfkl.Conv2DTranspose, 4 * self._depth, 5, **kwargs)(x) x = self.get('h3', tfkl.Conv2DTranspose, 2 * self._depth, 5, **kwargs)(x) x = self.get('h4', tfkl.Conv2DTranspose, 1 * self._depth, 5, **kwargs)(x) x = self.get('h5', tfkl.Conv2DTranspose, 1 * self._depth, 6, **kwargs)(x) x = self.get('h6', tfkl.Conv2DTranspose, self._shape[-1], 6, strides=2)(x) mean = tf.reshape(x, tf.concat([tf.shape(features)[:-1], self._shape], 0)) return tfd.Independent(tfd.Normal(mean, 1), len(self._shape)) class ConvEncoder(tools.Module): def __init__(self, depth=32, act=tf.nn.relu): self._act = act self._depth = depth def __call__(self, obs): kwargs = dict(strides=2, activation=self._act) x = tf.reshape(obs['image'], (-1,) + tuple(obs['image'].shape[-3:])) x = self.get('h1', tfkl.Conv2D, 1 * self._depth, 4, **kwargs)(x) x = self.get('h2', tfkl.Conv2D, 2 * self._depth, 4, **kwargs)(x) x = self.get('h3', tfkl.Conv2D, 4 * self._depth, 4, **kwargs)(x) x = self.get('h4', tfkl.Conv2D, 8 * self._depth, 4, **kwargs)(x) shape = tf.concat([tf.shape(obs['image'])[:-3], [32 * self._depth]], 0) return tf.reshape(x, shape) class ConvDecoder(tools.Module): def __init__(self, depth=32, act=tf.nn.relu, shape=(64, 64, 3)): self._act = act self._depth = depth self._shape = shape def __call__(self, features): kwargs = dict(strides=2, activation=self._act) x = self.get('h1', tfkl.Dense, 32 * self._depth, None)(features) x = tf.reshape(x, [-1, 1, 1, 32 * self._depth]) x = self.get('h2', tfkl.Conv2DTranspose, 4 * self._depth, 5, **kwargs)(x) x = self.get('h3', tfkl.Conv2DTranspose, 2 * self._depth, 5, **kwargs)(x) x = self.get('h4', tfkl.Conv2DTranspose, 1 * self._depth, 6, **kwargs)(x) x = self.get('h5', tfkl.Conv2DTranspose, self._shape[-1], 6, strides=2)(x) mean = tf.reshape(x, tf.concat([tf.shape(features)[:-1], self._shape], 0)) return tfd.Independent(tfd.Normal(mean, 1), len(self._shape)) class DenseDecoder(tools.Module): def __init__(self, shape, layers, units, dist='normal', act=tf.nn.elu): self._shape = shape self._layers = layers self._units = units self._dist = dist self._act = act def __call__(self, features): x = features for index in range(self._layers): x = self.get(f'h{index}', tfkl.Dense, self._units, self._act)(x) x = self.get(f'hout', tfkl.Dense, np.prod(self._shape))(x) x = tf.reshape(x, tf.concat([tf.shape(features)[:-1], self._shape], 0)) if self._dist == 'normal': return tfd.Independent(tfd.Normal(x, 1), len(self._shape)) if self._dist == 'binary': return tfd.Independent(tfd.Bernoulli(x), len(self._shape)) raise NotImplementedError(self._dist) class DenseNetwork(tools.Module): def __init__(self, shape, layers, units, act=tf.nn.elu): self._shape = shape self._layers = layers self._units = units self._act = act def __call__(self, features): x = features for index in range(self._layers): x = self.get(f'h{index}', tfkl.Dense, self._units, self._act)(x) x = self.get(f'hout', tfkl.Dense, self._shape)(x) return x class ActorNetwork(tools.Module): def __init__(self, shape, layers, units, act=tf.nn.elu, mean_scale=1.0): self._shape = shape self._layers = layers self._units = units self._act = act self._mean_scale = mean_scale def __call__(self, features): x = features for index in range(self._layers): x = self.get(f'h{index}', tfkl.Dense, self._units, self._act)(x) x = self.get(f'hout', tfkl.Dense, self._shape)(x) x = self._mean_scale * tf.tanh(x) return x