import copy import datetime import io import pathlib import pickle import uuid import numpy as np import tensorflow as tf import tensorflow.compat.v1 as tf1 from tensorflow_probability import distributions as tfd class AttrDict(dict): __setattr__ = dict.__setitem__ __getattr__ = dict.__getitem__ class Module(tf.Module): def save(self, filename): values = tf.nest.map_structure(lambda x: x.numpy(), self.variables) with pathlib.Path(filename).open('wb') as f: pickle.dump(values, f) def load(self, filename): with pathlib.Path(filename).open('rb') as f: values = pickle.load(f) tf.nest.map_structure(lambda x, y: x.assign(y), self.variables, values) def get(self, name, ctor, *args, **kwargs): # Create or get layer by name to avoid mentioning it in the constructor. if not hasattr(self, '_modules'): self._modules = {} if name not in self._modules: self._modules[name] = ctor(*args, **kwargs) return self._modules[name] def video_summary(name, video, step=None, fps=20): name = name if isinstance(name, str) else name.decode('utf-8') if np.issubdtype(video.dtype, np.floating): video = np.clip(255 * video, 0, 255).astype(np.uint8) B, T, H, W, C = video.shape try: frames = video.transpose((1, 2, 0, 3, 4)).reshape((T, H, B * W, C)) summary = tf1.Summary() image = tf1.Summary.Image(height=B * H, width=T * W, colorspace=C) image.encoded_image_string = encode_gif(frames, fps) summary.value.add(tag=name + '/gif', image=image) tf.summary.experimental.write_raw_pb(summary.SerializeToString(), step) except (IOError, OSError) as e: print('GIF summaries require ffmpeg in $PATH.', e) frames = video.transpose((0, 2, 1, 3, 4)).reshape((1, B * H, T * W, C)) tf.summary.image(name + '/grid', frames, step) def encode_gif(frames, fps): from subprocess import Popen, PIPE h, w, c = frames[0].shape pxfmt = {1: 'gray', 3: 'rgb24'}[c] cmd = ' '.join([ f'ffmpeg -y -f rawvideo -vcodec rawvideo', f'-r {fps:.02f} -s {w}x{h} -pix_fmt {pxfmt} -i - -filter_complex', f'[0:v]split[x][z];[z]palettegen[y];[x]fifo[x];[x][y]paletteuse', f'-r {fps:.02f} -f gif -']) proc = Popen(cmd.split(' '), stdin=PIPE, stdout=PIPE, stderr=PIPE) for image in frames: proc.stdin.write(image.tostring()) out, err = proc.communicate() if proc.returncode: raise IOError('\n'.join([' '.join(cmd), err.decode('utf8')])) del proc return out def simulate(agent, envs, steps=0, episodes=0, state=None): # Initialize or unpack simulation state. if state is None: step, episode = 0, 0 done = np.ones(len(envs), np.bool) length = np.zeros(len(envs), np.int32) obs = [None] * len(envs) agent_state = None else: step, episode, done, length, obs, agent_state = state while (steps and step < steps) or (episodes and episode < episodes): # Reset envs if necessary. if done.any(): indices = [index for index, d in enumerate(done) if d] promises = [envs[i].reset(blocking=False) for i in indices] for index, promise in zip(indices, promises): obs[index] = promise() # Step agents. obs = {k: np.stack([o[k] for o in obs]) for k in obs[0]} action, agent_state = agent(obs, done, agent_state) action = np.array(action) assert len(action) == len(envs) # Step envs. promises = [e.step(a, blocking=False) for e, a in zip(envs, action)] obs, _, done = zip(*[p()[:3] for p in promises]) obs = list(obs) done = np.stack(done) episode += int(done.sum()) length += 1 step += (done * length).sum() length *= (1 - done) # Return new state to allow resuming the simulation. return step - steps, episode - episodes, done, length, obs, agent_state def count_episodes(directory): filenames = directory.glob('*.npz') lengths = [int(n.stem.rsplit('-', 1)[-1]) - 1 for n in filenames] episodes, steps = len(lengths), sum(lengths) return episodes, steps def save_episodes(directory, episodes): directory = pathlib.Path(directory).expanduser() directory.mkdir(parents=True, exist_ok=True) timestamp = datetime.datetime.now().strftime('%Y%m%dT%H%M%S') for episode in episodes: identifier = str(uuid.uuid4().hex) length = len(episode['reward']) filename = directory / f'{timestamp}-{identifier}-{length}.npz' with io.BytesIO() as f1: np.savez_compressed(f1, **episode) f1.seek(0) with filename.open('wb') as f2: f2.write(f1.read()) def load_episodes(directory, rescan, length=None, balance=False, seed=0, load_episodes=1000): directory = pathlib.Path(directory).expanduser() random = np.random.RandomState(seed) filenames = list(directory.glob('*.npz')) load_episodes = min(len(filenames), load_episodes) if load_episodes is None: load_episodes = int(count_episodes(directory)[0] / 20) while True: cache = {} for filename in random.choice(list(directory.glob('*.npz')), load_episodes, replace=False): try: with filename.open('rb') as f: episode = np.load(f) episode = {k: episode[k] for k in episode.keys() if k not in ['image_128']} # episode['reward'] = copy.deepcopy(episode['success']) if 'discount' not in episode: episode['discount'] = np.where(episode['is_terminal'], 0., 1.) except Exception as e: print(f'Could not load episode: {e}') continue cache[filename] = episode keys = list(cache.keys()) for index in random.choice(len(keys), rescan): episode = copy.deepcopy(cache[keys[index]]) if length: total = len(next(iter(episode.values()))) available = total - length if available < 0: for key in episode.keys(): shape = episode[key].shape episode[key] = np.concatenate([episode[key], np.zeros([abs(available)] + list(shape[1:]))], axis=0) episode['mask'] = np.ones(length) episode['mask'][available:] = 0.0 elif available > 0: if balance: index = min(random.randint(0, total), available) else: index = int(random.randint(0, available)) episode = {k: v[index: index + length] for k, v in episode.items()} episode['mask'] = np.ones(length) else: episode['mask'] = np.ones_like(episode['reward']) else: episode['mask'] = np.ones_like(episode['reward']) yield episode class Adam(tf.Module): def __init__(self, name, modules, lr, clip=None, wd=None, wdpattern=r'.*'): self._name = name self._modules = modules self._clip = clip self._wd = wd self._wdpattern = wdpattern self._opt = tf.optimizers.Adam(lr) @property def variables(self): return self._opt.variables() def __call__(self, tape, loss): variables = [module.variables for module in self._modules] self._variables = tf.nest.flatten(variables) assert len(loss.shape) == 0, loss.shape grads = tape.gradient(loss, self._variables) norm = tf.linalg.global_norm(grads) if self._clip: grads, _ = tf.clip_by_global_norm(grads, self._clip, norm) self._opt.apply_gradients(zip(grads, self._variables)) return norm def args_type(default): if isinstance(default, bool): return lambda x: bool(['False', 'True'].index(x)) if isinstance(default, int): return lambda x: float(x) if ('e' in x or '.' in x) else int(x) if isinstance(default, pathlib.Path): return lambda x: pathlib.Path(x).expanduser() return type(default) def static_scan(fn, inputs, start, reverse=False): last = start outputs = [[] for _ in tf.nest.flatten(start)] indices = range(len(tf.nest.flatten(inputs)[0])) if reverse: indices = reversed(indices) for index in indices: inp = tf.nest.map_structure(lambda x: x[index], inputs) last = fn(last, inp) [o.append(l) for o, l in zip(outputs, tf.nest.flatten(last))] if reverse: outputs = [list(reversed(x)) for x in outputs] outputs = [tf.stack(x, 0) for x in outputs] return tf.nest.pack_sequence_as(start, outputs) def _mnd_sample(self, sample_shape=(), seed=None, name='sample'): return tf.random.normal( tuple(sample_shape) + tuple(self.event_shape), self.mean(), self.stddev(), self.dtype, seed, name) tfd.MultivariateNormalDiag.sample = _mnd_sample