# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import random import re import time import numpy as np import h5py from collections import deque import dmc from dm_env import StepType from drqbc.numpy_replay_buffer import EfficientReplayBuffer import torch import torch.nn as nn from torch import distributions as pyd from torch.distributions.utils import _standard_normal class eval_mode: def __init__(self, *models): self.models = models def __enter__(self): self.prev_states = [] for model in self.models: self.prev_states.append(model.training) model.train(False) def __exit__(self, *args): for model, state in zip(self.models, self.prev_states): model.train(state) return False def set_seed_everywhere(seed): torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed) np.random.seed(seed) random.seed(seed) def soft_update_params(net, target_net, tau): for param, target_param in zip(net.parameters(), target_net.parameters()): target_param.data.copy_(tau * param.data + (1 - tau) * target_param.data) def to_torch(xs, device): return tuple(torch.as_tensor(x, device=device) for x in xs) def weight_init(m): if isinstance(m, nn.Linear): nn.init.orthogonal_(m.weight.data) if hasattr(m.bias, 'data'): m.bias.data.fill_(0.0) elif isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d): gain = nn.init.calculate_gain('relu') nn.init.orthogonal_(m.weight.data, gain) if hasattr(m.bias, 'data'): m.bias.data.fill_(0.0) class Until: def __init__(self, until, action_repeat=1): self._until = until self._action_repeat = action_repeat def __call__(self, step): if self._until is None: return True until = self._until // self._action_repeat return step < until class Every: def __init__(self, every, action_repeat=1): self._every = every self._action_repeat = action_repeat def __call__(self, step): if self._every is None: return False every = self._every // self._action_repeat if step % every == 0: return True return False class Timer: def __init__(self): self._start_time = time.time() self._last_time = time.time() def reset(self): elapsed_time = time.time() - self._last_time self._last_time = time.time() total_time = time.time() - self._start_time return elapsed_time, total_time def total_time(self): return time.time() - self._start_time class TruncatedNormal(pyd.Normal): def __init__(self, loc, scale, low=-1.0, high=1.0, eps=1e-6): super().__init__(loc, scale, validate_args=False) self.low = low self.high = high self.eps = eps def _clamp(self, x): clamped_x = torch.clamp(x, self.low + self.eps, self.high - self.eps) x = x - x.detach() + clamped_x.detach() return x def sample(self, clip=None, sample_shape=torch.Size()): shape = self._extended_shape(sample_shape) eps = _standard_normal(shape, dtype=self.loc.dtype, device=self.loc.device) eps *= self.scale if clip is not None: eps = torch.clamp(eps, -clip, clip) x = self.loc + eps return self._clamp(x) def schedule(schdl, step): try: return float(schdl) except ValueError: match = re.match(r'linear\((.+),(.+),(.+)\)', schdl) if match: init, final, duration = [float(g) for g in match.groups()] mix = np.clip(step / duration, 0.0, 1.0) return (1.0 - mix) * init + mix * final match = re.match(r'step_linear\((.+),(.+),(.+),(.+),(.+)\)', schdl) if match: init, final1, duration1, final2, duration2 = [ float(g) for g in match.groups() ] if step <= duration1: mix = np.clip(step / duration1, 0.0, 1.0) return (1.0 - mix) * init + mix * final1 else: mix = np.clip((step - duration1) / duration2, 0.0, 1.0) return (1.0 - mix) * final1 + mix * final2 raise NotImplementedError(schdl) step_type_lookup = { 0: StepType.FIRST, 1: StepType.MID, 2: StepType.LAST } def load_offline_dataset_into_buffer(offline_dir, replay_buffer, frame_stack, replay_buffer_size): filenames = sorted(offline_dir.glob('*.hdf5')) num_steps = 0 for filename in filenames: try: episodes = h5py.File(filename, 'r') episodes = {k: episodes[k][:] for k in episodes.keys()} add_offline_data_to_buffer(episodes, replay_buffer, framestack=frame_stack) length = episodes['reward'].shape[0] num_steps += length except Exception as e: print(f'Could not load episode {str(filename)}: {e}') continue print("Loaded {} offline timesteps so far...".format(int(num_steps))) if num_steps >= replay_buffer_size: break print("Finished, loaded {} timesteps.".format(int(num_steps))) def add_offline_data_to_buffer(offline_data: dict, replay_buffer: EfficientReplayBuffer, framestack: int = 3): offline_data_length = offline_data['reward'].shape[0] for v in offline_data.values(): assert v.shape[0] == offline_data_length for idx in range(offline_data_length): time_step = get_timestep_from_idx(offline_data, idx) if not time_step.first(): stacked_frames.append(time_step.observation) time_step_stack = time_step._replace(observation=np.concatenate(stacked_frames, axis=0)) replay_buffer.add(time_step_stack) else: stacked_frames = deque(maxlen=framestack) while len(stacked_frames) < framestack: stacked_frames.append(time_step.observation) time_step_stack = time_step._replace(observation=np.concatenate(stacked_frames, axis=0)) replay_buffer.add(time_step_stack) def get_timestep_from_idx(offline_data: dict, idx: int): return dmc.ExtendedTimeStep( step_type=step_type_lookup[offline_data['step_type'][idx]], reward=offline_data['reward'][idx], observation=offline_data['observation'][idx], discount=offline_data['discount'][idx], action=offline_data['action'][idx] )