defaults: # Train Script logdir: /dev/null seed: 0 task: dmc_walker_walk envs: 1 envs_parallel: none render_size: [64, 64] dmc_camera: -1 atari_grayscale: True time_limit: 0 action_repeat: 1 # steps: 1e7 steps: 2e5 log_every: 1e4 eval_every: 1e5 eval_eps: 1 prefill: 10000 pretrain: 1 train_every: 5 train_steps: 1 expl_until: 0 replay: {capacity: 2e6, ongoing: False, minlen: 50, maxlen: 50, prioritize_ends: True} dataset: {batch: 16, length: 50} log_keys_video: ['image'] log_keys_sum: '^$' log_keys_mean: '^$' log_keys_max: '^$' precision: 16 jit: True offline_dir: [none] offline_model_train_steps: 25001 offline_model_loaddir: none offline_lmbd: 5.0 offline_penalty_type: none offline_model_save_every: 5000 offline_split_val: False offline_tune_lmbd: False offline_lmbd_cons: 1.5 offline_model_dataset: {batch: 64, length: 50} offline_train_dataset: {batch: 64, length: 50} # Agent clip_rewards: tanh expl_behavior: greedy expl_noise: 0.0 eval_noise: 0.0 eval_state_mean: False # World Model grad_heads: [decoder, reward, discount] pred_discount: True rssm: {ensemble: 7, hidden: 1024, deter: 1024, stoch: 32, discrete: 32, act: elu, norm: none, std_act: sigmoid2, min_std: 0.1} encoder: {mlp_keys: '.*', cnn_keys: '.*', act: elu, norm: none, cnn_depth: 48, cnn_kernels: [4, 4, 4, 4], mlp_layers: [400, 400, 400, 400]} decoder: {mlp_keys: '.*', cnn_keys: '.*', act: elu, norm: none, cnn_depth: 48, cnn_kernels: [5, 5, 6, 6], mlp_layers: [400, 400, 400, 400]} reward_head: {layers: 4, units: 400, act: elu, norm: none, dist: mse} discount_head: {layers: 4, units: 400, act: elu, norm: none, dist: binary} loss_scales: {kl: 1.0, reward: 1.0, discount: 1.0, proprio: 1.0} kl: {free: 0.0, forward: False, balance: 0.8, free_avg: True} model_opt: {opt: adam, lr: 1e-4, eps: 1e-5, clip: 100, wd: 1e-6} # Actor Critic actor: {layers: 4, units: 400, act: elu, norm: none, dist: auto, min_std: 0.1} critic: {layers: 4, units: 400, act: elu, norm: none, dist: mse} actor_opt: {opt: adam, lr: 8e-5, eps: 1e-5, clip: 100, wd: 1e-6} critic_opt: {opt: adam, lr: 2e-4, eps: 1e-5, clip: 100, wd: 1e-6} discount: 0.99 discount_lambda: 0.95 imag_horizon: 5 actor_grad: auto actor_grad_mix: 0.1 actor_ent: 2e-3 slow_target: True slow_target_update: 100 slow_target_fraction: 1 slow_baseline: True reward_norm: {momentum: 1.0, scale: 1.0, eps: 1e-8} # Exploration expl_intr_scale: 1.0 expl_extr_scale: 0.0 expl_opt: {opt: adam, lr: 3e-4, eps: 1e-5, clip: 100, wd: 1e-6} expl_head: {layers: 4, units: 400, act: elu, norm: none, dist: mse} expl_reward_norm: {momentum: 1.0, scale: 1.0, eps: 1e-8} disag_target: stoch disag_log: False disag_models: 10 disag_offset: 1 disag_action_cond: True expl_model_loss: kl atari: task: atari_pong encoder: {mlp_keys: '$^', cnn_keys: 'image'} decoder: {mlp_keys: '$^', cnn_keys: 'image'} time_limit: 27000 action_repeat: 4 steps: 5e7 eval_every: 2.5e5 log_every: 1e4 prefill: 50000 train_every: 16 clip_rewards: tanh rssm: {hidden: 600, deter: 600} model_opt.lr: 2e-4 actor_opt.lr: 4e-5 critic_opt.lr: 1e-4 actor_ent: 1e-3 discount: 0.999 loss_scales.kl: 0.1 loss_scales.discount: 5.0 crafter: task: crafter_reward encoder: {mlp_keys: '$^', cnn_keys: 'image'} decoder: {mlp_keys: '$^', cnn_keys: 'image'} log_keys_max: '^log_achievement_.*' log_keys_sum: '^log_reward$' discount: 0.999 .*\.norm: layer dmc_vision: task: dmc_walker_walk encoder: {mlp_keys: '$^', cnn_keys: 'image'} decoder: {mlp_keys: '$^', cnn_keys: 'image'} action_repeat: 2 eval_every: 1e4 prefill: 1000 pretrain: 100 clip_rewards: identity pred_discount: False replay.prioritize_ends: False grad_heads: [decoder, reward] rssm: {hidden: 200, deter: 200} model_opt.lr: 3e-4 actor_opt.lr: 8e-5 critic_opt.lr: 8e-5 actor_ent: 1e-4 kl.free: 1.0 dmc_proprio: task: dmc_walker_walk encoder: {mlp_keys: '.*', cnn_keys: '$^'} decoder: {mlp_keys: '.*', cnn_keys: '$^'} action_repeat: 2 eval_every: 1e4 prefill: 1000 pretrain: 100 clip_rewards: identity pred_discount: False replay.prioritize_ends: False grad_heads: [decoder, reward] rssm: {hidden: 200, deter: 200} model_opt.lr: 3e-4 actor_opt.lr: 8e-5 critic_opt.lr: 8e-5 actor_ent: 1e-4 kl.free: 1.0 debug: jit: False time_limit: 100 eval_every: 300 log_every: 300 prefill: 100 pretrain: 1 train_steps: 1 replay: {minlen: 10, maxlen: 30} dataset: {batch: 10, length: 10}