# Copyright 2022 Daniel van Strien. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Card Display Detection""" import collections import json import os from typing import Any, Dict, List import pandas as pd import datasets _CITATION = """Connor Hoehn""" _DESCRIPTION = "This dataset comprises of card display images from the public domain" _HOMEPAGE = "https://www.connorhoehn.com" _LICENSE = "Public Domain Mark 1.0" _DATASET_URL = "https://www.connorhoehn.com/object_detection_dataset_v2.zip" _CATEGORIES = ["boxed","grid","spread","stack"] class CardDisplayDetectorConfig(datasets.BuilderConfig): """BuilderConfig for card display dataset.""" def __init__(self, name, **kwargs): super(CardDisplayDetectorConfig, self).__init__( version=datasets.Version("1.0.0"), name=name, description="Card Display Detector", **kwargs, ) class CardDisplayDetector(datasets.GeneratorBasedBuilder): """Card Display dataset.""" BUILDER_CONFIGS = [ CardDisplayDetectorConfig("display-detection"), ] def _info(self): features = datasets.Features( { "image_id": datasets.Value("int64"), "image": datasets.Image(), "width": datasets.Value("int32"), "height": datasets.Value("int32"), } ) object_dict = { "category_id": datasets.ClassLabel(names=_CATEGORIES), "image_id": datasets.Value("string"), "id": datasets.Value("int64"), "area": datasets.Value("int64"), "bbox": datasets.Sequence(datasets.Value("float32"), length=4), "iscrowd": datasets.Value("bool"), } features["objects"] = [object_dict] return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): dataset_zip = dl_manager.download_and_extract(_DATASET_URL) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # COCO -> x.json, images/ gen_kwargs={ "annotations_file": os.path.join(dataset_zip, "result.json"), # Annotator indicated there was a folder named 1 that doesn't exist "image_dir": os.path.join(dataset_zip), }, ) ] # Return dictionary of unique image_ids that have multiple nested annotations def _get_image_id_to_annotations_mapping(self, annotations: List[Dict]) -> Dict[int, List[Dict[Any, Any]]]: """ A helper function to build a mapping from image ids to annotations. """ image_id_to_annotations = collections.defaultdict(list) for annotation in annotations: image_id_to_annotations[annotation["image_id"]].append(annotation) return image_id_to_annotations def _generate_examples(self, annotations_file, image_dir): def _image_info_to_example(image_info, image_dir): # from the annotation file image = image_info["file_name"] return { "image_id": image_info["id"], "image": os.path.join(image_dir, image), "width": image_info["width"], "height": image_info["height"], } with open(annotations_file, encoding="utf8") as annotation_json: annotation_data = json.load(annotation_json) images = annotation_data["images"] annotations = annotation_data["annotations"] # dictionary of image_ids with all related annotations (bbox) image_id_to_annotations = self._get_image_id_to_annotations_mapping( annotations ) if self.config.name == "display-detection": # yield image_id, features for image_id, image_info in enumerate(images): #image_info -> (w,h,id,filename) image_details = _image_info_to_example(image_info, image_dir) # Get images unit id annotations = image_id_to_annotations[image_info["id"]] objects = [] # Add the annotation information to the image details for annotation in annotations: del annotation['segmentation'] del annotation['ignore'] objects.append(annotation) # nested dictionary image_details["objects"] = objects yield (image_id, image_details)