Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
extractive-qa
Size:
100K - 1M
License:
File size: 4,941 Bytes
e213ad4 4749ace 68b4843 e213ad4 bb62de4 e213ad4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
---
annotations_creators:
- crowdsourced
language:
- en
- ar
- bn
- fi
- id
- ja
- sw
- ko
- ru
- te
- th
language_creators:
- crowdsourced
license:
- apache-2.0
multilinguality:
- multilingual
pretty_name: Answerable TyDi QA
size_categories:
- ['100K<n<1M']
source_datasets:
- extended|wikipedia
task_categories:
- question-answering
task_ids:
- extractive-qa
---
# Dataset Card for "answerable-tydiqa"
## Dataset Description
- **Homepage:** [https://github.com/google-research-datasets/tydiqa](https://github.com/google-research-datasets/tydiqa)
- **Paper:** [Paper](https://aclanthology.org/2020.tacl-1.30/)
- **Size of downloaded dataset files:** 75.43 MB
- **Size of the generated dataset:** 131.78 MB
- **Total amount of disk used:** 207.21 MB
### Dataset Summary
[TyDi QA](https://huggingface.co/datasets/tydiqa) is a question answering dataset covering 11 typologically diverse languages.
Answerable TyDi QA is an extension of the GoldP subtask of the original TyDi QA dataset to also include unanswertable questions.
## Dataset Structure
The dataset contains a train and a validation set, with 116067 and 13325 examples, respectively. Access them with
```py
from datasets import load_dataset
dataset = load_dataset("copenlu/answerable_tydiqa")
train_set = dataset["train"]
validation_set = dataset["validation"]
```
### Data Instances
Here is an example of an instance of the dataset:
```
{'question_text': 'dimanakah Dr. Ernest François Eugène Douwes Dekker meninggal?',
'document_title': 'Ernest Douwes Dekker',
'language': 'indonesian',
'annotations':
{'answer_start': [45],
'answer_text': ['28 Agustus 1950']
},
'document_plaintext': 'Ernest Douwes Dekker wafat dini hari tanggal 28 Agustus 1950 (tertulis di batu nisannya; 29 Agustus 1950 versi van der Veur, 2006) dan dimakamkan di TMP Cikutra, Bandung.',
'document_url': 'https://id.wikipedia.org/wiki/Ernest%20Douwes%20Dekker'}
```
Description of the dataset columns:
| Column name | type | Description |
| ----------- | ----------- | ----------- |
| document_title | str | The title of the Wikipedia article from which the data instance was generated |
| document_url | str | The URL of said article |
| language | str | The language of the data instance |
| question_text | str | The question to answer |
| document_plaintext | str | The context, a Wikipedia paragraph that might or might not contain the answer to the question |
| annotations["answer_start"] | list[int] | The char index in 'document_plaintext' where the answer starts. If the question is unanswerable - [-1] |
| annotations["answer_text"] | list[str] | The answer, a span of text from 'document_plaintext'. If the question is unanswerable - [''] |
**Notice:** If the question is *answerable*, annotations["answer_start"] and annotations["answer_text"] contain a list of length 1
(In some variations of the dataset the lists might be longer, e.g. if more than one person annotated the instance, but not in our case).
If the question is *unanswerable*, annotations["answer_start"] will have "-1", while annotations["answer_text"] contain a list with an empty string.
## Useful stuff
Check out the [datasets ducumentations](https://huggingface.co/docs/datasets/quickstart) to learn how to manipulate and use the dataset. Specifically, you might find the following functions useful:
`dataset.filter`, for filtering out data (useful for keeping instances of specific languages, for example).
`dataset.map`, for manipulating the dataset.
`dataset.to_pandas`, to convert the dataset into a pandas.DataFrame format.
```
@article{tydiqa,
title = {TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author = {Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}
year = {2020},
journal = {Transactions of the Association for Computational Linguistics}
}
```
### Contributions
Thanks to [@thomwolf](https://github.com/thomwolf), [@albertvillanova](https://github.com/albertvillanova), [@lewtun](https://github.com/lewtun), [@patrickvonplaten](https://github.com/patrickvonplaten) for adding this dataset. |