ggbetz commited on
Commit
a75cbc2
1 Parent(s): c607717

Delete data/mistralai/Mistral-Nemo-Instruct-2407

Browse files
data/mistralai/Mistral-Nemo-Instruct-2407/cot/24-10-02-16:36:00_idx5/mistralai__Mistral-Nemo-Instruct-2407/results_2024-10-02T17-35-51.419113.json DELETED
@@ -1,297 +0,0 @@
1
- {
2
- "results": {
3
- "nihil-aut-6602_logiqa2_cot": {
4
- "alias": "nihil-aut-6602_logiqa2_cot",
5
- "acc,none": 0.45229007633587787,
6
- "acc_stderr,none": 0.012557284732874588
7
- },
8
- "nihil-aut-6602_logiqa_cot": {
9
- "alias": "nihil-aut-6602_logiqa_cot",
10
- "acc,none": 0.3242811501597444,
11
- "acc_stderr,none": 0.01872422541247857
12
- },
13
- "nihil-aut-6602_lsat-ar_cot": {
14
- "alias": "nihil-aut-6602_lsat-ar_cot",
15
- "acc,none": 0.22608695652173913,
16
- "acc_stderr,none": 0.027641785707241327
17
- },
18
- "nihil-aut-6602_lsat-lr_cot": {
19
- "alias": "nihil-aut-6602_lsat-lr_cot",
20
- "acc,none": 0.4470588235294118,
21
- "acc_stderr,none": 0.022037529689177736
22
- },
23
- "nihil-aut-6602_lsat-rc_cot": {
24
- "alias": "nihil-aut-6602_lsat-rc_cot",
25
- "acc,none": 0.5241635687732342,
26
- "acc_stderr,none": 0.03050667421128308
27
- }
28
- },
29
- "group_subtasks": {
30
- "nihil-aut-6602_logiqa2_cot": [],
31
- "nihil-aut-6602_logiqa_cot": [],
32
- "nihil-aut-6602_lsat-ar_cot": [],
33
- "nihil-aut-6602_lsat-lr_cot": [],
34
- "nihil-aut-6602_lsat-rc_cot": []
35
- },
36
- "configs": {
37
- "nihil-aut-6602_logiqa2_cot": {
38
- "task": "nihil-aut-6602_logiqa2_cot",
39
- "tag": "logikon-bench",
40
- "group": "logikon-bench",
41
- "dataset_path": "cot-leaderboard/cot-eval-traces-2.0",
42
- "dataset_kwargs": {
43
- "data_files": {
44
- "test": "data/mistralai/Mistral-Nemo-Instruct-2407/nihil-aut-6602-logiqa2.parquet"
45
- }
46
- },
47
- "test_split": "test",
48
- "doc_to_text": "def doc_to_text_cot(doc) -> str:\n \"\"\"\n Answer the following question about the given passage. [Base your answer on the reasoning below.]\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n [Reasoning: <reasoning>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage. Base your answer on the reasoning below.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Reasoning: \" + doc[\"reasoning_trace\"] + \"\\n\\n\" \n prompt += \"Answer:\"\n return prompt\n",
49
- "doc_to_target": "{{answer}}",
50
- "doc_to_choice": "{{options}}",
51
- "description": "",
52
- "target_delimiter": " ",
53
- "fewshot_delimiter": "\n\n",
54
- "num_fewshot": 0,
55
- "metric_list": [
56
- {
57
- "metric": "acc",
58
- "aggregation": "mean",
59
- "higher_is_better": true
60
- }
61
- ],
62
- "output_type": "multiple_choice",
63
- "repeats": 1,
64
- "should_decontaminate": false,
65
- "metadata": {
66
- "version": 0.0
67
- }
68
- },
69
- "nihil-aut-6602_logiqa_cot": {
70
- "task": "nihil-aut-6602_logiqa_cot",
71
- "tag": "logikon-bench",
72
- "group": "logikon-bench",
73
- "dataset_path": "cot-leaderboard/cot-eval-traces-2.0",
74
- "dataset_kwargs": {
75
- "data_files": {
76
- "test": "data/mistralai/Mistral-Nemo-Instruct-2407/nihil-aut-6602-logiqa.parquet"
77
- }
78
- },
79
- "test_split": "test",
80
- "doc_to_text": "def doc_to_text_cot(doc) -> str:\n \"\"\"\n Answer the following question about the given passage. [Base your answer on the reasoning below.]\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n [Reasoning: <reasoning>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage. Base your answer on the reasoning below.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Reasoning: \" + doc[\"reasoning_trace\"] + \"\\n\\n\" \n prompt += \"Answer:\"\n return prompt\n",
81
- "doc_to_target": "{{answer}}",
82
- "doc_to_choice": "{{options}}",
83
- "description": "",
84
- "target_delimiter": " ",
85
- "fewshot_delimiter": "\n\n",
86
- "num_fewshot": 0,
87
- "metric_list": [
88
- {
89
- "metric": "acc",
90
- "aggregation": "mean",
91
- "higher_is_better": true
92
- }
93
- ],
94
- "output_type": "multiple_choice",
95
- "repeats": 1,
96
- "should_decontaminate": false,
97
- "metadata": {
98
- "version": 0.0
99
- }
100
- },
101
- "nihil-aut-6602_lsat-ar_cot": {
102
- "task": "nihil-aut-6602_lsat-ar_cot",
103
- "tag": "logikon-bench",
104
- "group": "logikon-bench",
105
- "dataset_path": "cot-leaderboard/cot-eval-traces-2.0",
106
- "dataset_kwargs": {
107
- "data_files": {
108
- "test": "data/mistralai/Mistral-Nemo-Instruct-2407/nihil-aut-6602-lsat-ar.parquet"
109
- }
110
- },
111
- "test_split": "test",
112
- "doc_to_text": "def doc_to_text_cot(doc) -> str:\n \"\"\"\n Answer the following question about the given passage. [Base your answer on the reasoning below.]\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n [Reasoning: <reasoning>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage. Base your answer on the reasoning below.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Reasoning: \" + doc[\"reasoning_trace\"] + \"\\n\\n\" \n prompt += \"Answer:\"\n return prompt\n",
113
- "doc_to_target": "{{answer}}",
114
- "doc_to_choice": "{{options}}",
115
- "description": "",
116
- "target_delimiter": " ",
117
- "fewshot_delimiter": "\n\n",
118
- "num_fewshot": 0,
119
- "metric_list": [
120
- {
121
- "metric": "acc",
122
- "aggregation": "mean",
123
- "higher_is_better": true
124
- }
125
- ],
126
- "output_type": "multiple_choice",
127
- "repeats": 1,
128
- "should_decontaminate": false,
129
- "metadata": {
130
- "version": 0.0
131
- }
132
- },
133
- "nihil-aut-6602_lsat-lr_cot": {
134
- "task": "nihil-aut-6602_lsat-lr_cot",
135
- "tag": "logikon-bench",
136
- "group": "logikon-bench",
137
- "dataset_path": "cot-leaderboard/cot-eval-traces-2.0",
138
- "dataset_kwargs": {
139
- "data_files": {
140
- "test": "data/mistralai/Mistral-Nemo-Instruct-2407/nihil-aut-6602-lsat-lr.parquet"
141
- }
142
- },
143
- "test_split": "test",
144
- "doc_to_text": "def doc_to_text_cot(doc) -> str:\n \"\"\"\n Answer the following question about the given passage. [Base your answer on the reasoning below.]\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n [Reasoning: <reasoning>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage. Base your answer on the reasoning below.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Reasoning: \" + doc[\"reasoning_trace\"] + \"\\n\\n\" \n prompt += \"Answer:\"\n return prompt\n",
145
- "doc_to_target": "{{answer}}",
146
- "doc_to_choice": "{{options}}",
147
- "description": "",
148
- "target_delimiter": " ",
149
- "fewshot_delimiter": "\n\n",
150
- "num_fewshot": 0,
151
- "metric_list": [
152
- {
153
- "metric": "acc",
154
- "aggregation": "mean",
155
- "higher_is_better": true
156
- }
157
- ],
158
- "output_type": "multiple_choice",
159
- "repeats": 1,
160
- "should_decontaminate": false,
161
- "metadata": {
162
- "version": 0.0
163
- }
164
- },
165
- "nihil-aut-6602_lsat-rc_cot": {
166
- "task": "nihil-aut-6602_lsat-rc_cot",
167
- "tag": "logikon-bench",
168
- "group": "logikon-bench",
169
- "dataset_path": "cot-leaderboard/cot-eval-traces-2.0",
170
- "dataset_kwargs": {
171
- "data_files": {
172
- "test": "data/mistralai/Mistral-Nemo-Instruct-2407/nihil-aut-6602-lsat-rc.parquet"
173
- }
174
- },
175
- "test_split": "test",
176
- "doc_to_text": "def doc_to_text_cot(doc) -> str:\n \"\"\"\n Answer the following question about the given passage. [Base your answer on the reasoning below.]\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n [Reasoning: <reasoning>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage. Base your answer on the reasoning below.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Reasoning: \" + doc[\"reasoning_trace\"] + \"\\n\\n\" \n prompt += \"Answer:\"\n return prompt\n",
177
- "doc_to_target": "{{answer}}",
178
- "doc_to_choice": "{{options}}",
179
- "description": "",
180
- "target_delimiter": " ",
181
- "fewshot_delimiter": "\n\n",
182
- "num_fewshot": 0,
183
- "metric_list": [
184
- {
185
- "metric": "acc",
186
- "aggregation": "mean",
187
- "higher_is_better": true
188
- }
189
- ],
190
- "output_type": "multiple_choice",
191
- "repeats": 1,
192
- "should_decontaminate": false,
193
- "metadata": {
194
- "version": 0.0
195
- }
196
- }
197
- },
198
- "versions": {
199
- "nihil-aut-6602_logiqa2_cot": 0.0,
200
- "nihil-aut-6602_logiqa_cot": 0.0,
201
- "nihil-aut-6602_lsat-ar_cot": 0.0,
202
- "nihil-aut-6602_lsat-lr_cot": 0.0,
203
- "nihil-aut-6602_lsat-rc_cot": 0.0
204
- },
205
- "n-shot": {
206
- "nihil-aut-6602_logiqa2_cot": 0,
207
- "nihil-aut-6602_logiqa_cot": 0,
208
- "nihil-aut-6602_lsat-ar_cot": 0,
209
- "nihil-aut-6602_lsat-lr_cot": 0,
210
- "nihil-aut-6602_lsat-rc_cot": 0
211
- },
212
- "higher_is_better": {
213
- "nihil-aut-6602_logiqa2_cot": {
214
- "acc": true
215
- },
216
- "nihil-aut-6602_logiqa_cot": {
217
- "acc": true
218
- },
219
- "nihil-aut-6602_lsat-ar_cot": {
220
- "acc": true
221
- },
222
- "nihil-aut-6602_lsat-lr_cot": {
223
- "acc": true
224
- },
225
- "nihil-aut-6602_lsat-rc_cot": {
226
- "acc": true
227
- }
228
- },
229
- "n-samples": {
230
- "nihil-aut-6602_lsat-rc_cot": {
231
- "original": 269,
232
- "effective": 269
233
- },
234
- "nihil-aut-6602_lsat-lr_cot": {
235
- "original": 510,
236
- "effective": 510
237
- },
238
- "nihil-aut-6602_lsat-ar_cot": {
239
- "original": 230,
240
- "effective": 230
241
- },
242
- "nihil-aut-6602_logiqa_cot": {
243
- "original": 626,
244
- "effective": 626
245
- },
246
- "nihil-aut-6602_logiqa2_cot": {
247
- "original": 1572,
248
- "effective": 1572
249
- }
250
- },
251
- "config": {
252
- "model": "local-completions",
253
- "model_args": "base_url=http://localhost:8080/v1/completions,num_concurrent=1,max_retries=3,tokenized_requests=False,model=mistralai/Mistral-Nemo-Instruct-2407,trust_remote_code=True",
254
- "batch_size": "1",
255
- "batch_sizes": [],
256
- "device": null,
257
- "use_cache": null,
258
- "limit": null,
259
- "bootstrap_iters": 100000,
260
- "gen_kwargs": null,
261
- "random_seed": 0,
262
- "numpy_seed": 1234,
263
- "torch_seed": 1234,
264
- "fewshot_seed": 1234
265
- },
266
- "git_hash": "f2eb17f",
267
- "date": 1727882300.8684413,
268
- "pretty_env_info": "PyTorch version: 2.4.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Red Hat Enterprise Linux release 8.8 (Ootpa) (x86_64)\nGCC version: (GCC) 8.5.0 20210514 (Red Hat 8.5.0-18)\nClang version: Could not collect\nCMake version: version 3.20.2\nLibc version: glibc-2.28\n\nPython version: 3.11.2 (main, May 20 2024, 08:58:58) [GCC 8.5.0 20210514 (Red Hat 8.5.0-18)] (64-bit runtime)\nPython platform: Linux-4.18.0-477.70.1.el8_8.x86_64-x86_64-with-glibc2.28\nIs CUDA available: True\nCUDA runtime version: 12.2.140\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA H100\nGPU 1: NVIDIA H100\n\nNvidia driver version: 550.54.15\ncuDNN version: Probably one of the following:\n/hkfs/home/software/all/devel/cuda/11.2/targets/x86_64-linux/lib/libcudnn.so.8.1.1\n/hkfs/home/software/all/devel/cuda/11.2/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.1.1\n/hkfs/home/software/all/devel/cuda/11.2/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.1.1\n/hkfs/home/software/all/devel/cuda/11.2/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.1.1\n/hkfs/home/software/all/devel/cuda/11.2/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.1.1\n/hkfs/home/software/all/devel/cuda/11.2/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.1.1\n/hkfs/home/software/all/devel/cuda/11.2/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.1.1\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitektur: x86_64\nCPU Operationsmodus: 32-bit, 64-bit\nByte-Reihenfolge: Little Endian\nCPU(s): 128\nListe der Online-CPU(s): 0-127\nThread(s) pro Kern: 2\nKern(e) pro Socket: 32\nSockel: 2\nNUMA-Knoten: 2\nAnbieterkennung: AuthenticAMD\nProzessorfamilie: 25\nModell: 17\nModellname: AMD EPYC 9354 32-Core Processor\nStepping: 1\nCPU MHz: 3800.000\nMaximale Taktfrequenz der CPU: 3800,0000\nMinimale Taktfrequenz der CPU: 400,0000\nBogoMIPS: 6499.55\nVirtualisierung: AMD-V\nL1d Cache: 32K\nL1i Cache: 32K\nL2 Cache: 1024K\nL3 Cache: 32768K\nNUMA-Knoten0 CPU(s): 0-31,64-95\nNUMA-Knoten1 CPU(s): 32-63,96-127\nMarkierungen: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba perfmon_v2 ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local avx512_bf16 clzero irperf xsaveerptr wbnoinvd amd_ppin cppc arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdpid overflow_recov succor smca fsrm flush_l1d\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.4.1\n[pip3] triton==3.0.0\n[conda] Could not collect",
269
- "transformers_version": "4.45.1",
270
- "upper_git_hash": null,
271
- "tokenizer_pad_token": [
272
- "<unk>",
273
- "0"
274
- ],
275
- "tokenizer_eos_token": [
276
- "</s>",
277
- "2"
278
- ],
279
- "tokenizer_bos_token": [
280
- "<s>",
281
- "1"
282
- ],
283
- "eot_token_id": 2,
284
- "max_length": 2047,
285
- "task_hashes": {},
286
- "model_source": "local-completions",
287
- "model_name": "mistralai/Mistral-Nemo-Instruct-2407",
288
- "model_name_sanitized": "mistralai__Mistral-Nemo-Instruct-2407",
289
- "system_instruction": null,
290
- "system_instruction_sha": null,
291
- "fewshot_as_multiturn": false,
292
- "chat_template": null,
293
- "chat_template_sha": null,
294
- "start_time": 697031.219934425,
295
- "end_time": 698085.214124437,
296
- "total_evaluation_time_seconds": "1053.9941900119884"
297
- }