--- license: unlicense dataset_info: features: - name: title dtype: string - name: selftext dtype: string - name: top_comment dtype: string - name: subreddit dtype: string splits: - name: train num_bytes: 12747912959 num_examples: 15689260 download_size: 7773494765 dataset_size: 12747912959 configs: - config_name: default data_files: - split: train path: data/train-* --- ## Top comments from subbreddits These are comments from a select group of subbreddits (see below) and all the posts were filtered to select only the top comment from that post. The filter criteria was that it must have had at least one up vote. It covers the dates from 2005-2022. I picked the subreddits that were the most popular. I did not pick NSFW but there is probably some NSFW language in here so be aware. The subreddits in the dataset are: * AskReddit * worldnews * todayilearned * Music * movies * science * Showerthoughts * Jokes * space * books * WritingPrompts * tifu * wallstreetbets * explainlikeimfive * askscience * history * technology * relationship_advice * relationships * Damnthatsinteresting * CryptoCurrency * television * politics * Parenting * Bitcoin * creepy * nosleep ## Loading the dataset Each entry in the dataset includes the following columns: - **title**: The title of the Reddit post. - **selftext**: The body text of the Reddit post. - **top_comment**: The top comment on the Reddit post. - **subreddit**: The subreddit where the post was made. ### 1. Loading the Entire Dataset To load the entire dataset, use the following code: ```python from datasets import load_dataset # Load the dataset dataset = load_dataset("cowWhySo/reddit_top_comments") ``` ### 2. Loading Specific Splits To load specific splits of the dataset: ```python from datasets import load_dataset # Load the train split train_dataset = load_dataset("cowWhySo/reddit_top_comments", split="train") # Load the validation split validation_dataset = load_dataset("cowWhySo/reddit_top_comments", split="validation") # Load the test split test_dataset = load_dataset("cowWhySo/reddit_top_comments", split="test") ``` ### 3. Streaming the Dataset You can stream the data: ```python from datasets import load_dataset # Stream the train split train_streaming = load_dataset("cowWhySo/reddit_top_comments", split="train", streaming=True) # Iterate through the dataset for example in train_streaming: print(example) break # Just print the first example for demonstration ``` ### 4. Loading a Specific Slice To load a specific portion of the dataset: ```python from datasets import load_dataset # Load the first 10% of the train split train_slice = load_dataset("your-username/your-dataset-name", split="train[:10%]") # Print the first few examples print(train_slice[:5]) ``` ## Code to download subredditt's dl_subbreddits.sh: ``` #!/bin/bash # # Directions: #./dl_reddit_comments.sh submissions # or #./dl_reddit_comments.sh comments # Check if the argument is provided and valid if [ "$#" -ne 1 ] || { [ "$1" != "submissions" ] && [ "$1" != "comments" ]; }; then echo "Usage: $0 " exit 1 fi # Create the reddit_data folder if it doesn't exist mkdir -p reddit_data # Base URL base_url="https://the-eye.eu/redarcs/files/" # Array of subreddit names subreddits=( "AskReddit" "worldnews" "todayilearned" "Music" "movies" "science" "Showerthoughts" "Jokes" "space" "books" "WritingPrompts" "tifu" "wallstreetbets" "explainlikeimfive" "askscience" "history" "technology" "relationship_advice" "relationships" "Damnthatsinteresting" "CryptoCurrency" "television" "politics" "Parenting" "Bitcoin" "creepy" "nosleep" ) # Export base_url so it can be used by xargs export base_url # Argument to determine whether to download comments or submissions type=$1 # Generate file names based on the argument file_names=() for subreddit in "${subreddits[@]}"; do file_names+=("${subreddit}_${type}.zst") done # Download each file using wget in parallel printf "%s\n" "${file_names[@]}" | xargs -n 1 -P 8 -I {} wget -P reddit_data "${base_url}{}" ``` ## Code to process for top comments This may need some work. There is some chunking that needed to be done because some of the comment files are very large. AskReddit subbreddit was 50gb of comments so processing that to a csv was a bit painful. ``` import zstandard import os import json import sys import csv from datetime import datetime import logging from concurrent.futures import ProcessPoolExecutor log = logging.getLogger("bot") log.setLevel(logging.DEBUG) log.addHandler(logging.StreamHandler()) def read_and_decode(reader, chunk_size, max_window_size, previous_chunk=None, bytes_read=0): chunk = reader.read(chunk_size) bytes_read += chunk_size if previous_chunk is not None: chunk = previous_chunk + chunk try: return chunk.decode() except UnicodeDecodeError: if bytes_read > max_window_size: raise UnicodeError(f"Unable to decode frame after reading {bytes_read:,} bytes") log.info(f"Decoding error with {bytes_read:,} bytes, reading another chunk") return read_and_decode(reader, chunk_size, max_window_size, chunk, bytes_read) def read_lines_zst(file_name): with open(file_name, 'rb') as file_handle: buffer = '' reader = zstandard.ZstdDecompressor(max_window_size=2**31).stream_reader(file_handle) while True: chunk = read_and_decode(reader, 2**27, (2**29) * 2) if not chunk: break lines = (buffer + chunk).split("\n") for line in lines[:-1]: yield line, file_handle.tell() buffer = lines[-1] reader.close() def process_file(input_file, output_folder): output_file_path = os.path.join(output_folder, os.path.splitext(os.path.basename(input_file))[0] + '.csv') log.info(f"Processing {input_file} to {output_file_path}") is_submission = "submission" in input_file if is_submission: fields = ["author", "title", "score", "created", "link", "text", "url"] else: fields = ["author", "score", "created", "link", "body"] file_size = os.stat(input_file).st_size file_lines, bad_lines = 0, 0 line, created = None, None # Dictionary to store the top comment for each post top_comments = {} with open(output_file_path, "w", encoding='utf-8', newline="") as output_file: writer = csv.DictWriter(output_file, fieldnames=fields, quoting=csv.QUOTE_MINIMAL, quotechar='"', escapechar='\\') writer.writeheader() try: for line, file_bytes_processed in read_lines_zst(input_file): try: obj = json.loads(line) if is_submission: # Process submission data submission = { 'author': f"u/{obj['author']}", 'title': obj.get('title', ''), 'score': obj.get('score', 0), 'created': datetime.fromtimestamp(int(obj['created_utc'])).strftime("%Y-%m-%d %H:%M"), 'link': f"https://www.reddit.com/r/{obj['subreddit']}/comments/{obj['id']}/", 'text': obj.get('selftext', ''), 'url': obj.get('url', ''), } writer.writerow(submission) else: # Process comment data and look for top comments post_id = obj['link_id'] score = obj.get('score', 0) body = obj.get('body', '') if "[deleted]" in body or score <= 1: continue comment = { 'author': f"u/{obj['author']}", 'score': score, 'created': datetime.fromtimestamp(int(obj['created_utc'])).strftime("%Y-%m-%d %H:%M"), 'link': f"https://www.reddit.com/r/{obj['subreddit']}/comments/{obj['link_id'][3:]}/_/{obj['id']}/", 'body': body, } if post_id not in top_comments or score > top_comments[post_id]['score']: top_comments[post_id] = comment writer.writerow(comment) created = datetime.utcfromtimestamp(int(obj['created_utc'])) except json.JSONDecodeError as err: bad_lines += 1 file_lines += 1 if file_lines % 100000 == 0: log.info(f"{created.strftime('%Y-%m-%d %H:%M:%S')} : {file_lines:,} : {bad_lines:,} : {(file_bytes_processed / file_size) * 100:.0f}%") except KeyError as err: log.info(f"Object has no key: {err}") log.info(line) except Exception as err: log.info(err) log.info(line) log.info(f"Complete : {file_lines:,} : {bad_lines:,}") def convert_to_csv(input_folder, output_folder): input_files = [] for subdir, dirs, files in os.walk(input_folder): for filename in files: input_path = os.path.join(subdir, filename) if input_path.endswith(".zst"): input_files.append(input_path) with ProcessPoolExecutor() as executor: futures = [executor.submit(process_file, input_file, output_folder) for input_file in input_files] for future in futures: future.result() if __name__ == "__main__": if len(sys.argv) < 3: print("Usage: python script.py ") sys.exit(1) input_folder = sys.argv[1] output_folder = sys.argv[2] convert_to_csv(input_folder, output_folder) ``` ## Combining into one dataset Afer finishing, combined into one parquet: ``` import pandas as pd import os # Define the folder containing the CSV files folder_path = 'csv' # List of files in the folder files = os.listdir(folder_path) # Initialize an empty list to store dataframes dfs = [] # Process each file for file in files: if file.endswith('.csv'): # Extract subreddit name from the file name subreddit = file.split('_')[0] # Read the CSV file df = pd.read_csv(os.path.join(folder_path, file)) # Add the subreddit name as a new column df['subreddit'] = subreddit # Keep only the required columns and rename them df = df[['title', 'selftext', 'top_comment_body', 'subreddit']] df.columns = ['title', 'selftext', 'top_comment', 'subreddit'] # Append the dataframe to the list dfs.append(df) # Concatenate all dataframes combined_df = pd.concat(dfs, ignore_index=True) # Save the combined dataframe to a Parquet file combined_df.to_parquet('reddit_top_comments.parquet', index=False) ``` ## Source https://the-eye.eu/redarcs/