Datasets:

Languages:
Japanese
License:
File size: 5,336 Bytes
fb189c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import ast
import os
from typing import Optional

import datasets as ds
import pandas as pd

_CITATION = """\
@inproceedings{mita-et-al:nlp2023,
    author =    "三田 雅人 and 村上 聡一朗 and 張 培楠",
    title =	    "広告文生成タスクの規定とベンチマーク構築",
    booktitle = "言語処理学会 第29回年次大会",
    year =      2023,
}
"""

_DESCRIPTION = """\
CAMERA (CyberAgent Multimodal Evaluation for Ad Text GeneRAtion) is the Japanese ad text generation dataset.
"""

_HOMEPAGE = "https://github.com/CyberAgentAILab/camera"

_LICENSE = """\
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
"""

_URLS = {
    "without-lp-images": "https://storage.googleapis.com/camera-public/camera-v1-minimal.tar.gz",
    "with-lp-images": "https://storage.googleapis.com/camera-public/camera-v1.tar.gz",
}


class CameraDataset(ds.GeneratorBasedBuilder):
    VERSION = ds.Version("1.0.0")
    BUILDER_CONFIGS = [
        ds.BuilderConfig(
            name="without-lp-images",
            version=VERSION,
            description="The CAMERA dataset w/o LP images (ver.1.0.0 | 126.2 MiB)",
        ),
        ds.BuilderConfig(
            name="with-lp-images",
            version=VERSION,
            description="The CAMERA dataset w/ LP images (ver.1.0.0 | 61.5 GiB)",
        ),
    ]

    def _info(self) -> ds.DatasetInfo:
        features = ds.Features(
            {
                "asset_id": ds.Value("int64"),
                "kw": ds.Value("string"),
                "lp_meta_description": ds.Value("string"),
                "title_org": ds.Value("string"),
                "title_ne1": ds.Value("string"),
                "title_ne2": ds.Value("string"),
                "title_ne3": ds.Value("string"),
                "domain": ds.Value("string"),
                "parsed_full_text_annotation": ds.Sequence(
                    {
                        "text": ds.Value("string"),
                        "xmax": ds.Value("int64"),
                        "xmin": ds.Value("int64"),
                        "ymax": ds.Value("int64"),
                        "ymin": ds.Value("int64"),
                    }
                ),
            }
        )

        if self.config.name == "with-lp-images":
            features["lp_image"] = ds.Image()

        return ds.DatasetInfo(
            description=_DESCRIPTION,
            citation=_CITATION,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            features=features,
        )

    def _split_generators(self, dl_manager: ds.DownloadManager):
        base_dir = dl_manager.download_and_extract(_URLS[self.config.name])
        lp_image_dir: Optional[str] = None

        if self.config.name == "without-lp-images":
            camera_dir_name = f"camera-v{self.VERSION.major}-minimal"
        elif self.config.name == "with-lp-images":
            camera_dir_name = f"camera-v{self.VERSION.major}"
            lp_image_dir = os.path.join(base_dir, camera_dir_name, "lp-screenshot")
        else:
            raise ValueError(f"Invalid config name: {self.config.name}")

        tng_path = os.path.join(base_dir, camera_dir_name, "train.csv")
        dev_path = os.path.join(base_dir, camera_dir_name, "dev.csv")
        tst_path = os.path.join(base_dir, camera_dir_name, "test.csv")

        return [
            ds.SplitGenerator(
                name=ds.Split.TRAIN,
                gen_kwargs={"file_path": tng_path, "lp_image_dir": lp_image_dir},
            ),
            ds.SplitGenerator(
                name=ds.Split.VALIDATION,
                gen_kwargs={"file_path": dev_path, "lp_image_dir": lp_image_dir},
            ),
            ds.SplitGenerator(
                name=ds.Split.TEST,
                gen_kwargs={"file_path": tst_path, "lp_image_dir": lp_image_dir},
            ),
        ]

    def _generate_examples(self, file_path: str, lp_image_dir: Optional[str] = None):
        df = pd.read_csv(file_path)
        for i in range(len(df)):
            data_dict = df.iloc[i].to_dict()

            asset_id = data_dict["asset_id"]
            keywords = data_dict["kw"]
            lp_meta_description = data_dict["lp_meta_description"]
            domain = data_dict.get("domain", "")
            text_anns = ast.literal_eval(data_dict["parsed_full_text_annotation"])

            title_org = data_dict["title_org"]
            title_ne1 = data_dict.get("title_ne1", "")
            title_ne2 = data_dict.get("title_ne2", "")
            title_ne3 = data_dict.get("title_ne3", "")

            example_dict = {
                "asset_id": asset_id,
                "kw": keywords,
                "lp_meta_description": lp_meta_description,
                "title_org": title_org,
                "title_ne1": title_ne1,
                "title_ne2": title_ne2,
                "title_ne3": title_ne3,
                "domain": domain,
                "parsed_full_text_annotation": text_anns,
            }

            if self.config.name == "with-lp-images" and lp_image_dir is not None:
                lp_image_file_name = f"screen-1200-{asset_id}.png"
                example_dict["lp_image"] = os.path.join(
                    lp_image_dir, lp_image_file_name
                )

            yield i, example_dict