|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""The Spanish Billion Words Corpus.""" |
|
|
|
|
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@misc{cardellinoSBWCE, |
|
author = {Cardellino, Cristian}, |
|
title = {Spanish {B}illion {W}ords {C}orpus and {E}mbeddings}, |
|
url = {https://crscardellino.github.io/SBWCE/}, |
|
month = {August}, |
|
year = {2019} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
An unannotated Spanish corpus of nearly 1.5 billion words, compiled from different resources from the web. |
|
This resources include the spanish portions of SenSem, the Ancora Corpus, some OPUS Project Corpora and the Europarl, |
|
the Tibidabo Treebank, the IULA Spanish LSP Treebank, and dumps from the Spanish Wikipedia, Wikisource and Wikibooks. |
|
This corpus is a compilation of 100 text files. Each line of these files represents one of the 50 million sentences from the corpus. |
|
""" |
|
|
|
_HOMEPAGE = "https://crscardellino.github.io/SBWCE/" |
|
|
|
_LICENSE = "https://creativecommons.org/licenses/by-sa/4.0/" |
|
|
|
_URL = "http://cs.famaf.unc.edu.ar/~ccardellino/SBWCE/clean_corpus.tar.bz2" |
|
|
|
|
|
class SpanishBillionWords(datasets.GeneratorBasedBuilder): |
|
"""The Spanish Billion Words Corpus.""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="corpus", |
|
version=VERSION, |
|
description="100 text files where each line represents a sentence from the corpus", |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
data_dir = dl_manager.download_and_extract(_URL) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, gen_kwargs={"directory": os.path.join(data_dir, "spanish_billion_words")} |
|
) |
|
] |
|
|
|
def _generate_examples(self, directory): |
|
"""Yields examples.""" |
|
files = os.listdir(directory) |
|
files = sorted(files) |
|
_id = 0 |
|
|
|
for file in files: |
|
file_path = os.path.join(directory, file) |
|
with open(file_path, mode="r", encoding="utf-8") as f: |
|
for line in f: |
|
yield _id, {"text": line.strip()} |
|
_id += 1 |
|
|