File size: 6,418 Bytes
77fbc00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import torch


Tensor = torch.Tensor
Device = torch.DeviceObjType
Dtype = torch.Type
pad = torch.nn.functional.pad


def _compute_zero_padding(kernel_size: tuple[int, int] | int) -> tuple[int, int]:
    ky, kx = _unpack_2d_ks(kernel_size)
    return (ky - 1) // 2, (kx - 1) // 2


def _unpack_2d_ks(kernel_size: tuple[int, int] | int) -> tuple[int, int]:
    if isinstance(kernel_size, int):
        ky = kx = kernel_size
    else:
        assert len(kernel_size) == 2, '2D Kernel size should have a length of 2.'
        ky, kx = kernel_size

    ky = int(ky)
    kx = int(kx)
    return ky, kx


def gaussian(
    window_size: int, sigma: Tensor | float, *, device: Device | None = None, dtype: Dtype | None = None
) -> Tensor:

    batch_size = sigma.shape[0]

    x = (torch.arange(window_size, device=sigma.device, dtype=sigma.dtype) - window_size // 2).expand(batch_size, -1)

    if window_size % 2 == 0:
        x = x + 0.5

    gauss = torch.exp(-x.pow(2.0) / (2 * sigma.pow(2.0)))

    return gauss / gauss.sum(-1, keepdim=True)


def get_gaussian_kernel1d(
    kernel_size: int,
    sigma: float | Tensor,
    force_even: bool = False,
    *,
    device: Device | None = None,
    dtype: Dtype | None = None,
) -> Tensor:

    return gaussian(kernel_size, sigma, device=device, dtype=dtype)


def get_gaussian_kernel2d(
    kernel_size: tuple[int, int] | int,
    sigma: tuple[float, float] | Tensor,
    force_even: bool = False,
    *,
    device: Device | None = None,
    dtype: Dtype | None = None,
) -> Tensor:

    sigma = torch.Tensor([[sigma, sigma]]).to(device=device, dtype=dtype)

    ksize_y, ksize_x = _unpack_2d_ks(kernel_size)
    sigma_y, sigma_x = sigma[:, 0, None], sigma[:, 1, None]

    kernel_y = get_gaussian_kernel1d(ksize_y, sigma_y, force_even, device=device, dtype=dtype)[..., None]
    kernel_x = get_gaussian_kernel1d(ksize_x, sigma_x, force_even, device=device, dtype=dtype)[..., None]

    return kernel_y * kernel_x.view(-1, 1, ksize_x)


def _bilateral_blur(
    input: Tensor,
    guidance: Tensor | None,
    kernel_size: tuple[int, int] | int,
    sigma_color: float | Tensor,
    sigma_space: tuple[float, float] | Tensor,
    border_type: str = 'reflect',
    color_distance_type: str = 'l1',
) -> Tensor:

    if isinstance(sigma_color, Tensor):
        sigma_color = sigma_color.to(device=input.device, dtype=input.dtype).view(-1, 1, 1, 1, 1)

    ky, kx = _unpack_2d_ks(kernel_size)
    pad_y, pad_x = _compute_zero_padding(kernel_size)

    padded_input = pad(input, (pad_x, pad_x, pad_y, pad_y), mode=border_type)
    unfolded_input = padded_input.unfold(2, ky, 1).unfold(3, kx, 1).flatten(-2)  # (B, C, H, W, Ky x Kx)

    if guidance is None:
        guidance = input
        unfolded_guidance = unfolded_input
    else:
        padded_guidance = pad(guidance, (pad_x, pad_x, pad_y, pad_y), mode=border_type)
        unfolded_guidance = padded_guidance.unfold(2, ky, 1).unfold(3, kx, 1).flatten(-2)  # (B, C, H, W, Ky x Kx)

    diff = unfolded_guidance - guidance.unsqueeze(-1)
    if color_distance_type == "l1":
        color_distance_sq = diff.abs().sum(1, keepdim=True).square()
    elif color_distance_type == "l2":
        color_distance_sq = diff.square().sum(1, keepdim=True)
    else:
        raise ValueError("color_distance_type only acceps l1 or l2")
    color_kernel = (-0.5 / sigma_color**2 * color_distance_sq).exp()  # (B, 1, H, W, Ky x Kx)

    space_kernel = get_gaussian_kernel2d(kernel_size, sigma_space, device=input.device, dtype=input.dtype)
    space_kernel = space_kernel.view(-1, 1, 1, 1, kx * ky)

    kernel = space_kernel * color_kernel
    out = (unfolded_input * kernel).sum(-1) / kernel.sum(-1)
    return out


def bilateral_blur(
    input: Tensor,
    kernel_size: tuple[int, int] | int = (13, 13),
    sigma_color: float | Tensor = 3.0,
    sigma_space: tuple[float, float] | Tensor = 3.0,
    border_type: str = 'reflect',
    color_distance_type: str = 'l1',
) -> Tensor:
    return _bilateral_blur(input, None, kernel_size, sigma_color, sigma_space, border_type, color_distance_type)


def adaptive_anisotropic_filter(x, g=None):
    if g is None:
        g = x
    s, m = torch.std_mean(g, dim=(1, 2, 3), keepdim=True)
    s = s + 1e-5
    guidance = (g - m) / s
    y = _bilateral_blur(x, guidance,
                        kernel_size=(13, 13),
                        sigma_color=3.0,
                        sigma_space=3.0,
                        border_type='reflect',
                        color_distance_type='l1')
    return y


def joint_bilateral_blur(
    input: Tensor,
    guidance: Tensor,
    kernel_size: tuple[int, int] | int,
    sigma_color: float | Tensor,
    sigma_space: tuple[float, float] | Tensor,
    border_type: str = 'reflect',
    color_distance_type: str = 'l1',
) -> Tensor:
    return _bilateral_blur(input, guidance, kernel_size, sigma_color, sigma_space, border_type, color_distance_type)


class _BilateralBlur(torch.nn.Module):
    def __init__(
        self,
        kernel_size: tuple[int, int] | int,
        sigma_color: float | Tensor,
        sigma_space: tuple[float, float] | Tensor,
        border_type: str = 'reflect',
        color_distance_type: str = "l1",
    ) -> None:
        super().__init__()
        self.kernel_size = kernel_size
        self.sigma_color = sigma_color
        self.sigma_space = sigma_space
        self.border_type = border_type
        self.color_distance_type = color_distance_type

    def __repr__(self) -> str:
        return (
            f"{self.__class__.__name__}"
            f"(kernel_size={self.kernel_size}, "
            f"sigma_color={self.sigma_color}, "
            f"sigma_space={self.sigma_space}, "
            f"border_type={self.border_type}, "
            f"color_distance_type={self.color_distance_type})"
        )


class BilateralBlur(_BilateralBlur):
    def forward(self, input: Tensor) -> Tensor:
        return bilateral_blur(
            input, self.kernel_size, self.sigma_color, self.sigma_space, self.border_type, self.color_distance_type
        )


class JointBilateralBlur(_BilateralBlur):
    def forward(self, input: Tensor, guidance: Tensor) -> Tensor:
        return joint_bilateral_blur(
            input,
            guidance,
            self.kernel_size,
            self.sigma_color,
            self.sigma_space,
            self.border_type,
            self.color_distance_type,
        )