|
import torch |
|
import ldm_patched.modules.clip_vision |
|
import safetensors.torch as sf |
|
import ldm_patched.modules.model_management as model_management |
|
import ldm_patched.ldm.modules.attention as attention |
|
|
|
from extras.resampler import Resampler |
|
from ldm_patched.modules.model_patcher import ModelPatcher |
|
from modules.core import numpy_to_pytorch |
|
from modules.ops import use_patched_ops |
|
from ldm_patched.modules.ops import manual_cast |
|
|
|
|
|
SD_V12_CHANNELS = [320] * 4 + [640] * 4 + [1280] * 4 + [1280] * 6 + [640] * 6 + [320] * 6 + [1280] * 2 |
|
SD_XL_CHANNELS = [640] * 8 + [1280] * 40 + [1280] * 60 + [640] * 12 + [1280] * 20 |
|
|
|
|
|
def sdp(q, k, v, extra_options): |
|
return attention.optimized_attention(q, k, v, heads=extra_options["n_heads"], mask=None) |
|
|
|
|
|
class ImageProjModel(torch.nn.Module): |
|
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4): |
|
super().__init__() |
|
|
|
self.cross_attention_dim = cross_attention_dim |
|
self.clip_extra_context_tokens = clip_extra_context_tokens |
|
self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim) |
|
self.norm = torch.nn.LayerNorm(cross_attention_dim) |
|
|
|
def forward(self, image_embeds): |
|
embeds = image_embeds |
|
clip_extra_context_tokens = self.proj(embeds).reshape(-1, self.clip_extra_context_tokens, |
|
self.cross_attention_dim) |
|
clip_extra_context_tokens = self.norm(clip_extra_context_tokens) |
|
return clip_extra_context_tokens |
|
|
|
|
|
class To_KV(torch.nn.Module): |
|
def __init__(self, cross_attention_dim): |
|
super().__init__() |
|
|
|
channels = SD_XL_CHANNELS if cross_attention_dim == 2048 else SD_V12_CHANNELS |
|
self.to_kvs = torch.nn.ModuleList( |
|
[torch.nn.Linear(cross_attention_dim, channel, bias=False) for channel in channels]) |
|
|
|
def load_state_dict_ordered(self, sd): |
|
state_dict = [] |
|
for i in range(4096): |
|
for k in ['k', 'v']: |
|
key = f'{i}.to_{k}_ip.weight' |
|
if key in sd: |
|
state_dict.append(sd[key]) |
|
for i, v in enumerate(state_dict): |
|
self.to_kvs[i].weight = torch.nn.Parameter(v, requires_grad=False) |
|
|
|
|
|
class IPAdapterModel(torch.nn.Module): |
|
def __init__(self, state_dict, plus, cross_attention_dim=768, clip_embeddings_dim=1024, clip_extra_context_tokens=4, |
|
sdxl_plus=False): |
|
super().__init__() |
|
self.plus = plus |
|
if self.plus: |
|
self.image_proj_model = Resampler( |
|
dim=1280 if sdxl_plus else cross_attention_dim, |
|
depth=4, |
|
dim_head=64, |
|
heads=20 if sdxl_plus else 12, |
|
num_queries=clip_extra_context_tokens, |
|
embedding_dim=clip_embeddings_dim, |
|
output_dim=cross_attention_dim, |
|
ff_mult=4 |
|
) |
|
else: |
|
self.image_proj_model = ImageProjModel( |
|
cross_attention_dim=cross_attention_dim, |
|
clip_embeddings_dim=clip_embeddings_dim, |
|
clip_extra_context_tokens=clip_extra_context_tokens |
|
) |
|
|
|
self.image_proj_model.load_state_dict(state_dict["image_proj"]) |
|
self.ip_layers = To_KV(cross_attention_dim) |
|
self.ip_layers.load_state_dict_ordered(state_dict["ip_adapter"]) |
|
|
|
|
|
clip_vision: ldm_patched.modules.clip_vision.ClipVisionModel = None |
|
ip_negative: torch.Tensor = None |
|
ip_adapters: dict = {} |
|
|
|
|
|
def load_ip_adapter(clip_vision_path, ip_negative_path, ip_adapter_path): |
|
global clip_vision, ip_negative, ip_adapters |
|
|
|
if clip_vision is None and isinstance(clip_vision_path, str): |
|
clip_vision = ldm_patched.modules.clip_vision.load(clip_vision_path) |
|
|
|
if ip_negative is None and isinstance(ip_negative_path, str): |
|
ip_negative = sf.load_file(ip_negative_path)['data'] |
|
|
|
if not isinstance(ip_adapter_path, str) or ip_adapter_path in ip_adapters: |
|
return |
|
|
|
load_device = model_management.get_torch_device() |
|
offload_device = torch.device('cpu') |
|
|
|
use_fp16 = model_management.should_use_fp16(device=load_device) |
|
ip_state_dict = torch.load(ip_adapter_path, map_location="cpu") |
|
plus = "latents" in ip_state_dict["image_proj"] |
|
cross_attention_dim = ip_state_dict["ip_adapter"]["1.to_k_ip.weight"].shape[1] |
|
sdxl = cross_attention_dim == 2048 |
|
sdxl_plus = sdxl and plus |
|
|
|
if plus: |
|
clip_extra_context_tokens = ip_state_dict["image_proj"]["latents"].shape[1] |
|
clip_embeddings_dim = ip_state_dict["image_proj"]["latents"].shape[2] |
|
else: |
|
clip_extra_context_tokens = ip_state_dict["image_proj"]["proj.weight"].shape[0] // cross_attention_dim |
|
clip_embeddings_dim = None |
|
|
|
with use_patched_ops(manual_cast): |
|
ip_adapter = IPAdapterModel( |
|
ip_state_dict, |
|
plus=plus, |
|
cross_attention_dim=cross_attention_dim, |
|
clip_embeddings_dim=clip_embeddings_dim, |
|
clip_extra_context_tokens=clip_extra_context_tokens, |
|
sdxl_plus=sdxl_plus |
|
) |
|
|
|
ip_adapter.sdxl = sdxl |
|
ip_adapter.load_device = load_device |
|
ip_adapter.offload_device = offload_device |
|
ip_adapter.dtype = torch.float16 if use_fp16 else torch.float32 |
|
ip_adapter.to(offload_device, dtype=ip_adapter.dtype) |
|
|
|
image_proj_model = ModelPatcher(model=ip_adapter.image_proj_model, load_device=load_device, |
|
offload_device=offload_device) |
|
ip_layers = ModelPatcher(model=ip_adapter.ip_layers, load_device=load_device, |
|
offload_device=offload_device) |
|
|
|
ip_adapters[ip_adapter_path] = dict( |
|
ip_adapter=ip_adapter, |
|
image_proj_model=image_proj_model, |
|
ip_layers=ip_layers, |
|
ip_unconds=None |
|
) |
|
|
|
return |
|
|
|
|
|
@torch.no_grad() |
|
@torch.inference_mode() |
|
def clip_preprocess(image): |
|
mean = torch.tensor([0.48145466, 0.4578275, 0.40821073], device=image.device, dtype=image.dtype).view([1, 3, 1, 1]) |
|
std = torch.tensor([0.26862954, 0.26130258, 0.27577711], device=image.device, dtype=image.dtype).view([1, 3, 1, 1]) |
|
image = image.movedim(-1, 1) |
|
|
|
|
|
B, C, H, W = image.shape |
|
assert H == 224 and W == 224 |
|
|
|
return (image - mean) / std |
|
|
|
|
|
@torch.no_grad() |
|
@torch.inference_mode() |
|
def preprocess(img, ip_adapter_path): |
|
global ip_adapters |
|
entry = ip_adapters[ip_adapter_path] |
|
|
|
ldm_patched.modules.model_management.load_model_gpu(clip_vision.patcher) |
|
pixel_values = clip_preprocess(numpy_to_pytorch(img).to(clip_vision.load_device)) |
|
outputs = clip_vision.model(pixel_values=pixel_values, output_hidden_states=True) |
|
|
|
ip_adapter = entry['ip_adapter'] |
|
ip_layers = entry['ip_layers'] |
|
image_proj_model = entry['image_proj_model'] |
|
ip_unconds = entry['ip_unconds'] |
|
|
|
if ip_adapter.plus: |
|
cond = outputs.hidden_states[-2] |
|
else: |
|
cond = outputs.image_embeds |
|
|
|
cond = cond.to(device=ip_adapter.load_device, dtype=ip_adapter.dtype) |
|
|
|
ldm_patched.modules.model_management.load_model_gpu(image_proj_model) |
|
cond = image_proj_model.model(cond).to(device=ip_adapter.load_device, dtype=ip_adapter.dtype) |
|
|
|
ldm_patched.modules.model_management.load_model_gpu(ip_layers) |
|
|
|
if ip_unconds is None: |
|
uncond = ip_negative.to(device=ip_adapter.load_device, dtype=ip_adapter.dtype) |
|
ip_unconds = [m(uncond).cpu() for m in ip_layers.model.to_kvs] |
|
entry['ip_unconds'] = ip_unconds |
|
|
|
ip_conds = [m(cond).cpu() for m in ip_layers.model.to_kvs] |
|
|
|
return ip_conds, ip_unconds |
|
|
|
|
|
@torch.no_grad() |
|
@torch.inference_mode() |
|
def patch_model(model, tasks): |
|
new_model = model.clone() |
|
|
|
def make_attn_patcher(ip_index): |
|
def patcher(n, context_attn2, value_attn2, extra_options): |
|
org_dtype = n.dtype |
|
current_step = float(model.model.diffusion_model.current_step.detach().cpu().numpy()[0]) |
|
cond_or_uncond = extra_options['cond_or_uncond'] |
|
|
|
q = n |
|
k = [context_attn2] |
|
v = [value_attn2] |
|
b, _, _ = q.shape |
|
|
|
for (cs, ucs), cn_stop, cn_weight in tasks: |
|
if current_step < cn_stop: |
|
ip_k_c = cs[ip_index * 2].to(q) |
|
ip_v_c = cs[ip_index * 2 + 1].to(q) |
|
ip_k_uc = ucs[ip_index * 2].to(q) |
|
ip_v_uc = ucs[ip_index * 2 + 1].to(q) |
|
|
|
ip_k = torch.cat([(ip_k_c, ip_k_uc)[i] for i in cond_or_uncond], dim=0) |
|
ip_v = torch.cat([(ip_v_c, ip_v_uc)[i] for i in cond_or_uncond], dim=0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ip_v_mean = torch.mean(ip_v, dim=1, keepdim=True) |
|
ip_v_offset = ip_v - ip_v_mean |
|
|
|
B, F, C = ip_k.shape |
|
channel_penalty = float(C) / 1280.0 |
|
weight = cn_weight * channel_penalty |
|
|
|
ip_k = ip_k * weight |
|
ip_v = ip_v_offset + ip_v_mean * weight |
|
|
|
k.append(ip_k) |
|
v.append(ip_v) |
|
|
|
k = torch.cat(k, dim=1) |
|
v = torch.cat(v, dim=1) |
|
out = sdp(q, k, v, extra_options) |
|
|
|
|
|
return out.to(dtype=org_dtype) |
|
return patcher |
|
|
|
def set_model_patch_replace(model, number, key): |
|
to = model.model_options["transformer_options"] |
|
if "patches_replace" not in to: |
|
to["patches_replace"] = {} |
|
if "attn2" not in to["patches_replace"]: |
|
to["patches_replace"]["attn2"] = {} |
|
if key not in to["patches_replace"]["attn2"]: |
|
to["patches_replace"]["attn2"][key] = make_attn_patcher(number) |
|
|
|
number = 0 |
|
|
|
for id in [4, 5, 7, 8]: |
|
block_indices = range(2) if id in [4, 5] else range(10) |
|
for index in block_indices: |
|
set_model_patch_replace(new_model, number, ("input", id, index)) |
|
number += 1 |
|
|
|
for id in range(6): |
|
block_indices = range(2) if id in [3, 4, 5] else range(10) |
|
for index in block_indices: |
|
set_model_patch_replace(new_model, number, ("output", id, index)) |
|
number += 1 |
|
|
|
for index in range(10): |
|
set_model_patch_replace(new_model, number, ("middle", 0, index)) |
|
number += 1 |
|
|
|
return new_model |
|
|