|
|
|
|
|
import numpy as np |
|
import torch |
|
import ldm_patched.modules.utils |
|
from enum import Enum |
|
|
|
def resize_mask(mask, shape): |
|
return torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(shape[0], shape[1]), mode="bilinear").squeeze(1) |
|
|
|
class PorterDuffMode(Enum): |
|
ADD = 0 |
|
CLEAR = 1 |
|
DARKEN = 2 |
|
DST = 3 |
|
DST_ATOP = 4 |
|
DST_IN = 5 |
|
DST_OUT = 6 |
|
DST_OVER = 7 |
|
LIGHTEN = 8 |
|
MULTIPLY = 9 |
|
OVERLAY = 10 |
|
SCREEN = 11 |
|
SRC = 12 |
|
SRC_ATOP = 13 |
|
SRC_IN = 14 |
|
SRC_OUT = 15 |
|
SRC_OVER = 16 |
|
XOR = 17 |
|
|
|
|
|
def porter_duff_composite(src_image: torch.Tensor, src_alpha: torch.Tensor, dst_image: torch.Tensor, dst_alpha: torch.Tensor, mode: PorterDuffMode): |
|
if mode == PorterDuffMode.ADD: |
|
out_alpha = torch.clamp(src_alpha + dst_alpha, 0, 1) |
|
out_image = torch.clamp(src_image + dst_image, 0, 1) |
|
elif mode == PorterDuffMode.CLEAR: |
|
out_alpha = torch.zeros_like(dst_alpha) |
|
out_image = torch.zeros_like(dst_image) |
|
elif mode == PorterDuffMode.DARKEN: |
|
out_alpha = src_alpha + dst_alpha - src_alpha * dst_alpha |
|
out_image = (1 - dst_alpha) * src_image + (1 - src_alpha) * dst_image + torch.min(src_image, dst_image) |
|
elif mode == PorterDuffMode.DST: |
|
out_alpha = dst_alpha |
|
out_image = dst_image |
|
elif mode == PorterDuffMode.DST_ATOP: |
|
out_alpha = src_alpha |
|
out_image = src_alpha * dst_image + (1 - dst_alpha) * src_image |
|
elif mode == PorterDuffMode.DST_IN: |
|
out_alpha = src_alpha * dst_alpha |
|
out_image = dst_image * src_alpha |
|
elif mode == PorterDuffMode.DST_OUT: |
|
out_alpha = (1 - src_alpha) * dst_alpha |
|
out_image = (1 - src_alpha) * dst_image |
|
elif mode == PorterDuffMode.DST_OVER: |
|
out_alpha = dst_alpha + (1 - dst_alpha) * src_alpha |
|
out_image = dst_image + (1 - dst_alpha) * src_image |
|
elif mode == PorterDuffMode.LIGHTEN: |
|
out_alpha = src_alpha + dst_alpha - src_alpha * dst_alpha |
|
out_image = (1 - dst_alpha) * src_image + (1 - src_alpha) * dst_image + torch.max(src_image, dst_image) |
|
elif mode == PorterDuffMode.MULTIPLY: |
|
out_alpha = src_alpha * dst_alpha |
|
out_image = src_image * dst_image |
|
elif mode == PorterDuffMode.OVERLAY: |
|
out_alpha = src_alpha + dst_alpha - src_alpha * dst_alpha |
|
out_image = torch.where(2 * dst_image < dst_alpha, 2 * src_image * dst_image, |
|
src_alpha * dst_alpha - 2 * (dst_alpha - src_image) * (src_alpha - dst_image)) |
|
elif mode == PorterDuffMode.SCREEN: |
|
out_alpha = src_alpha + dst_alpha - src_alpha * dst_alpha |
|
out_image = src_image + dst_image - src_image * dst_image |
|
elif mode == PorterDuffMode.SRC: |
|
out_alpha = src_alpha |
|
out_image = src_image |
|
elif mode == PorterDuffMode.SRC_ATOP: |
|
out_alpha = dst_alpha |
|
out_image = dst_alpha * src_image + (1 - src_alpha) * dst_image |
|
elif mode == PorterDuffMode.SRC_IN: |
|
out_alpha = src_alpha * dst_alpha |
|
out_image = src_image * dst_alpha |
|
elif mode == PorterDuffMode.SRC_OUT: |
|
out_alpha = (1 - dst_alpha) * src_alpha |
|
out_image = (1 - dst_alpha) * src_image |
|
elif mode == PorterDuffMode.SRC_OVER: |
|
out_alpha = src_alpha + (1 - src_alpha) * dst_alpha |
|
out_image = src_image + (1 - src_alpha) * dst_image |
|
elif mode == PorterDuffMode.XOR: |
|
out_alpha = (1 - dst_alpha) * src_alpha + (1 - src_alpha) * dst_alpha |
|
out_image = (1 - dst_alpha) * src_image + (1 - src_alpha) * dst_image |
|
else: |
|
out_alpha = None |
|
out_image = None |
|
return out_image, out_alpha |
|
|
|
|
|
class PorterDuffImageComposite: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"source": ("IMAGE",), |
|
"source_alpha": ("MASK",), |
|
"destination": ("IMAGE",), |
|
"destination_alpha": ("MASK",), |
|
"mode": ([mode.name for mode in PorterDuffMode], {"default": PorterDuffMode.DST.name}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE", "MASK") |
|
FUNCTION = "composite" |
|
CATEGORY = "mask/compositing" |
|
|
|
def composite(self, source: torch.Tensor, source_alpha: torch.Tensor, destination: torch.Tensor, destination_alpha: torch.Tensor, mode): |
|
batch_size = min(len(source), len(source_alpha), len(destination), len(destination_alpha)) |
|
out_images = [] |
|
out_alphas = [] |
|
|
|
for i in range(batch_size): |
|
src_image = source[i] |
|
dst_image = destination[i] |
|
|
|
assert src_image.shape[2] == dst_image.shape[2] |
|
|
|
src_alpha = source_alpha[i].unsqueeze(2) |
|
dst_alpha = destination_alpha[i].unsqueeze(2) |
|
|
|
if dst_alpha.shape[:2] != dst_image.shape[:2]: |
|
upscale_input = dst_alpha.unsqueeze(0).permute(0, 3, 1, 2) |
|
upscale_output = ldm_patched.modules.utils.common_upscale(upscale_input, dst_image.shape[1], dst_image.shape[0], upscale_method='bicubic', crop='center') |
|
dst_alpha = upscale_output.permute(0, 2, 3, 1).squeeze(0) |
|
if src_image.shape != dst_image.shape: |
|
upscale_input = src_image.unsqueeze(0).permute(0, 3, 1, 2) |
|
upscale_output = ldm_patched.modules.utils.common_upscale(upscale_input, dst_image.shape[1], dst_image.shape[0], upscale_method='bicubic', crop='center') |
|
src_image = upscale_output.permute(0, 2, 3, 1).squeeze(0) |
|
if src_alpha.shape != dst_alpha.shape: |
|
upscale_input = src_alpha.unsqueeze(0).permute(0, 3, 1, 2) |
|
upscale_output = ldm_patched.modules.utils.common_upscale(upscale_input, dst_alpha.shape[1], dst_alpha.shape[0], upscale_method='bicubic', crop='center') |
|
src_alpha = upscale_output.permute(0, 2, 3, 1).squeeze(0) |
|
|
|
out_image, out_alpha = porter_duff_composite(src_image, src_alpha, dst_image, dst_alpha, PorterDuffMode[mode]) |
|
|
|
out_images.append(out_image) |
|
out_alphas.append(out_alpha.squeeze(2)) |
|
|
|
result = (torch.stack(out_images), torch.stack(out_alphas)) |
|
return result |
|
|
|
|
|
class SplitImageWithAlpha: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
} |
|
} |
|
|
|
CATEGORY = "mask/compositing" |
|
RETURN_TYPES = ("IMAGE", "MASK") |
|
FUNCTION = "split_image_with_alpha" |
|
|
|
def split_image_with_alpha(self, image: torch.Tensor): |
|
out_images = [i[:,:,:3] for i in image] |
|
out_alphas = [i[:,:,3] if i.shape[2] > 3 else torch.ones_like(i[:,:,0]) for i in image] |
|
result = (torch.stack(out_images), 1.0 - torch.stack(out_alphas)) |
|
return result |
|
|
|
|
|
class JoinImageWithAlpha: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
"alpha": ("MASK",), |
|
} |
|
} |
|
|
|
CATEGORY = "mask/compositing" |
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "join_image_with_alpha" |
|
|
|
def join_image_with_alpha(self, image: torch.Tensor, alpha: torch.Tensor): |
|
batch_size = min(len(image), len(alpha)) |
|
out_images = [] |
|
|
|
alpha = 1.0 - resize_mask(alpha, image.shape[1:]) |
|
for i in range(batch_size): |
|
out_images.append(torch.cat((image[i][:,:,:3], alpha[i].unsqueeze(2)), dim=2)) |
|
|
|
result = (torch.stack(out_images),) |
|
return result |
|
|
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"PorterDuffImageComposite": PorterDuffImageComposite, |
|
"SplitImageWithAlpha": SplitImageWithAlpha, |
|
"JoinImageWithAlpha": JoinImageWithAlpha, |
|
} |
|
|
|
|
|
NODE_DISPLAY_NAME_MAPPINGS = { |
|
"PorterDuffImageComposite": "Porter-Duff Image Composite", |
|
"SplitImageWithAlpha": "Split Image with Alpha", |
|
"JoinImageWithAlpha": "Join Image with Alpha", |
|
} |
|
|