|
|
|
|
|
|
|
|
|
import torch |
|
|
|
|
|
def Fourier_filter(x, threshold, scale): |
|
|
|
x_freq = torch.fft.fftn(x.float(), dim=(-2, -1)) |
|
x_freq = torch.fft.fftshift(x_freq, dim=(-2, -1)) |
|
|
|
B, C, H, W = x_freq.shape |
|
mask = torch.ones((B, C, H, W), device=x.device) |
|
|
|
crow, ccol = H // 2, W //2 |
|
mask[..., crow - threshold:crow + threshold, ccol - threshold:ccol + threshold] = scale |
|
x_freq = x_freq * mask |
|
|
|
|
|
x_freq = torch.fft.ifftshift(x_freq, dim=(-2, -1)) |
|
x_filtered = torch.fft.ifftn(x_freq, dim=(-2, -1)).real |
|
|
|
return x_filtered.to(x.dtype) |
|
|
|
|
|
class FreeU: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "model": ("MODEL",), |
|
"b1": ("FLOAT", {"default": 1.1, "min": 0.0, "max": 10.0, "step": 0.01}), |
|
"b2": ("FLOAT", {"default": 1.2, "min": 0.0, "max": 10.0, "step": 0.01}), |
|
"s1": ("FLOAT", {"default": 0.9, "min": 0.0, "max": 10.0, "step": 0.01}), |
|
"s2": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 10.0, "step": 0.01}), |
|
}} |
|
RETURN_TYPES = ("MODEL",) |
|
FUNCTION = "patch" |
|
|
|
CATEGORY = "model_patches" |
|
|
|
def patch(self, model, b1, b2, s1, s2): |
|
model_channels = model.model.model_config.unet_config["model_channels"] |
|
scale_dict = {model_channels * 4: (b1, s1), model_channels * 2: (b2, s2)} |
|
on_cpu_devices = {} |
|
|
|
def output_block_patch(h, hsp, transformer_options): |
|
scale = scale_dict.get(h.shape[1], None) |
|
if scale is not None: |
|
h[:,:h.shape[1] // 2] = h[:,:h.shape[1] // 2] * scale[0] |
|
if hsp.device not in on_cpu_devices: |
|
try: |
|
hsp = Fourier_filter(hsp, threshold=1, scale=scale[1]) |
|
except: |
|
print("Device", hsp.device, "does not support the torch.fft functions used in the FreeU node, switching to CPU.") |
|
on_cpu_devices[hsp.device] = True |
|
hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device) |
|
else: |
|
hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device) |
|
|
|
return h, hsp |
|
|
|
m = model.clone() |
|
m.set_model_output_block_patch(output_block_patch) |
|
return (m, ) |
|
|
|
class FreeU_V2: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "model": ("MODEL",), |
|
"b1": ("FLOAT", {"default": 1.3, "min": 0.0, "max": 10.0, "step": 0.01}), |
|
"b2": ("FLOAT", {"default": 1.4, "min": 0.0, "max": 10.0, "step": 0.01}), |
|
"s1": ("FLOAT", {"default": 0.9, "min": 0.0, "max": 10.0, "step": 0.01}), |
|
"s2": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 10.0, "step": 0.01}), |
|
}} |
|
RETURN_TYPES = ("MODEL",) |
|
FUNCTION = "patch" |
|
|
|
CATEGORY = "model_patches" |
|
|
|
def patch(self, model, b1, b2, s1, s2): |
|
model_channels = model.model.model_config.unet_config["model_channels"] |
|
scale_dict = {model_channels * 4: (b1, s1), model_channels * 2: (b2, s2)} |
|
on_cpu_devices = {} |
|
|
|
def output_block_patch(h, hsp, transformer_options): |
|
scale = scale_dict.get(h.shape[1], None) |
|
if scale is not None: |
|
hidden_mean = h.mean(1).unsqueeze(1) |
|
B = hidden_mean.shape[0] |
|
hidden_max, _ = torch.max(hidden_mean.view(B, -1), dim=-1, keepdim=True) |
|
hidden_min, _ = torch.min(hidden_mean.view(B, -1), dim=-1, keepdim=True) |
|
hidden_mean = (hidden_mean - hidden_min.unsqueeze(2).unsqueeze(3)) / (hidden_max - hidden_min).unsqueeze(2).unsqueeze(3) |
|
|
|
h[:,:h.shape[1] // 2] = h[:,:h.shape[1] // 2] * ((scale[0] - 1 ) * hidden_mean + 1) |
|
|
|
if hsp.device not in on_cpu_devices: |
|
try: |
|
hsp = Fourier_filter(hsp, threshold=1, scale=scale[1]) |
|
except: |
|
print("Device", hsp.device, "does not support the torch.fft functions used in the FreeU node, switching to CPU.") |
|
on_cpu_devices[hsp.device] = True |
|
hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device) |
|
else: |
|
hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device) |
|
|
|
return h, hsp |
|
|
|
m = model.clone() |
|
m.set_model_output_block_patch(output_block_patch) |
|
return (m, ) |
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"FreeU": FreeU, |
|
"FreeU_V2": FreeU_V2, |
|
} |
|
|