|
|
|
|
|
import torch |
|
import ldm_patched.modules.model_management |
|
import ldm_patched.modules.sample |
|
import ldm_patched.modules.samplers |
|
import ldm_patched.modules.utils |
|
|
|
|
|
class PerpNeg: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": {"model": ("MODEL", ), |
|
"empty_conditioning": ("CONDITIONING", ), |
|
"neg_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0}), |
|
}} |
|
RETURN_TYPES = ("MODEL",) |
|
FUNCTION = "patch" |
|
|
|
CATEGORY = "_for_testing" |
|
|
|
def patch(self, model, empty_conditioning, neg_scale): |
|
m = model.clone() |
|
nocond = ldm_patched.modules.sample.convert_cond(empty_conditioning) |
|
|
|
def cfg_function(args): |
|
model = args["model"] |
|
noise_pred_pos = args["cond_denoised"] |
|
noise_pred_neg = args["uncond_denoised"] |
|
cond_scale = args["cond_scale"] |
|
x = args["input"] |
|
sigma = args["sigma"] |
|
model_options = args["model_options"] |
|
nocond_processed = ldm_patched.modules.samplers.encode_model_conds(model.extra_conds, nocond, x, x.device, "negative") |
|
|
|
(noise_pred_nocond, _) = ldm_patched.modules.samplers.calc_cond_uncond_batch(model, nocond_processed, None, x, sigma, model_options) |
|
|
|
pos = noise_pred_pos - noise_pred_nocond |
|
neg = noise_pred_neg - noise_pred_nocond |
|
perp = ((torch.mul(pos, neg).sum())/(torch.norm(neg)**2)) * neg |
|
perp_neg = perp * neg_scale |
|
cfg_result = noise_pred_nocond + cond_scale*(pos - perp_neg) |
|
cfg_result = x - cfg_result |
|
return cfg_result |
|
|
|
m.set_model_sampler_cfg_function(cfg_function) |
|
|
|
return (m, ) |
|
|
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"PerpNeg": PerpNeg, |
|
} |
|
|
|
NODE_DISPLAY_NAME_MAPPINGS = { |
|
"PerpNeg": "Perp-Neg", |
|
} |
|
|