|
|
|
|
|
import torch |
|
import ldm_patched.contrib.external |
|
import ldm_patched.modules.utils |
|
|
|
class SD_4XUpscale_Conditioning: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "images": ("IMAGE",), |
|
"positive": ("CONDITIONING",), |
|
"negative": ("CONDITIONING",), |
|
"scale_ratio": ("FLOAT", {"default": 4.0, "min": 0.0, "max": 10.0, "step": 0.01}), |
|
"noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}), |
|
}} |
|
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT") |
|
RETURN_NAMES = ("positive", "negative", "latent") |
|
|
|
FUNCTION = "encode" |
|
|
|
CATEGORY = "conditioning/upscale_diffusion" |
|
|
|
def encode(self, images, positive, negative, scale_ratio, noise_augmentation): |
|
width = max(1, round(images.shape[-2] * scale_ratio)) |
|
height = max(1, round(images.shape[-3] * scale_ratio)) |
|
|
|
pixels = ldm_patched.modules.utils.common_upscale((images.movedim(-1,1) * 2.0) - 1.0, width // 4, height // 4, "bilinear", "center") |
|
|
|
out_cp = [] |
|
out_cn = [] |
|
|
|
for t in positive: |
|
n = [t[0], t[1].copy()] |
|
n[1]['concat_image'] = pixels |
|
n[1]['noise_augmentation'] = noise_augmentation |
|
out_cp.append(n) |
|
|
|
for t in negative: |
|
n = [t[0], t[1].copy()] |
|
n[1]['concat_image'] = pixels |
|
n[1]['noise_augmentation'] = noise_augmentation |
|
out_cn.append(n) |
|
|
|
latent = torch.zeros([images.shape[0], 4, height // 4, width // 4]) |
|
return (out_cp, out_cn, {"samples":latent}) |
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"SD_4XUpscale_Conditioning": SD_4XUpscale_Conditioning, |
|
} |
|
|