|
|
|
|
|
import torch |
|
import ldm_patched.contrib.external |
|
import ldm_patched.modules.utils |
|
|
|
def camera_embeddings(elevation, azimuth): |
|
elevation = torch.as_tensor([elevation]) |
|
azimuth = torch.as_tensor([azimuth]) |
|
embeddings = torch.stack( |
|
[ |
|
torch.deg2rad( |
|
(90 - elevation) - (90) |
|
), |
|
torch.sin(torch.deg2rad(azimuth)), |
|
torch.cos(torch.deg2rad(azimuth)), |
|
torch.deg2rad( |
|
90 - torch.full_like(elevation, 0) |
|
), |
|
], dim=-1).unsqueeze(1) |
|
|
|
return embeddings |
|
|
|
|
|
class StableZero123_Conditioning: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "clip_vision": ("CLIP_VISION",), |
|
"init_image": ("IMAGE",), |
|
"vae": ("VAE",), |
|
"width": ("INT", {"default": 256, "min": 16, "max": ldm_patched.contrib.external.MAX_RESOLUTION, "step": 8}), |
|
"height": ("INT", {"default": 256, "min": 16, "max": ldm_patched.contrib.external.MAX_RESOLUTION, "step": 8}), |
|
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}), |
|
"elevation": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0}), |
|
"azimuth": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0}), |
|
}} |
|
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT") |
|
RETURN_NAMES = ("positive", "negative", "latent") |
|
|
|
FUNCTION = "encode" |
|
|
|
CATEGORY = "conditioning/3d_models" |
|
|
|
def encode(self, clip_vision, init_image, vae, width, height, batch_size, elevation, azimuth): |
|
output = clip_vision.encode_image(init_image) |
|
pooled = output.image_embeds.unsqueeze(0) |
|
pixels = ldm_patched.modules.utils.common_upscale(init_image.movedim(-1,1), width, height, "bilinear", "center").movedim(1,-1) |
|
encode_pixels = pixels[:,:,:,:3] |
|
t = vae.encode(encode_pixels) |
|
cam_embeds = camera_embeddings(elevation, azimuth) |
|
cond = torch.cat([pooled, cam_embeds.to(pooled.device).repeat((pooled.shape[0], 1, 1))], dim=-1) |
|
|
|
positive = [[cond, {"concat_latent_image": t}]] |
|
negative = [[torch.zeros_like(pooled), {"concat_latent_image": torch.zeros_like(t)}]] |
|
latent = torch.zeros([batch_size, 4, height // 8, width // 8]) |
|
return (positive, negative, {"samples":latent}) |
|
|
|
class StableZero123_Conditioning_Batched: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "clip_vision": ("CLIP_VISION",), |
|
"init_image": ("IMAGE",), |
|
"vae": ("VAE",), |
|
"width": ("INT", {"default": 256, "min": 16, "max": ldm_patched.contrib.external.MAX_RESOLUTION, "step": 8}), |
|
"height": ("INT", {"default": 256, "min": 16, "max": ldm_patched.contrib.external.MAX_RESOLUTION, "step": 8}), |
|
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}), |
|
"elevation": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0}), |
|
"azimuth": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0}), |
|
"elevation_batch_increment": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0}), |
|
"azimuth_batch_increment": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0}), |
|
}} |
|
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT") |
|
RETURN_NAMES = ("positive", "negative", "latent") |
|
|
|
FUNCTION = "encode" |
|
|
|
CATEGORY = "conditioning/3d_models" |
|
|
|
def encode(self, clip_vision, init_image, vae, width, height, batch_size, elevation, azimuth, elevation_batch_increment, azimuth_batch_increment): |
|
output = clip_vision.encode_image(init_image) |
|
pooled = output.image_embeds.unsqueeze(0) |
|
pixels = ldm_patched.modules.utils.common_upscale(init_image.movedim(-1,1), width, height, "bilinear", "center").movedim(1,-1) |
|
encode_pixels = pixels[:,:,:,:3] |
|
t = vae.encode(encode_pixels) |
|
|
|
cam_embeds = [] |
|
for i in range(batch_size): |
|
cam_embeds.append(camera_embeddings(elevation, azimuth)) |
|
elevation += elevation_batch_increment |
|
azimuth += azimuth_batch_increment |
|
|
|
cam_embeds = torch.cat(cam_embeds, dim=0) |
|
cond = torch.cat([ldm_patched.modules.utils.repeat_to_batch_size(pooled, batch_size), cam_embeds], dim=-1) |
|
|
|
positive = [[cond, {"concat_latent_image": t}]] |
|
negative = [[torch.zeros_like(pooled), {"concat_latent_image": torch.zeros_like(t)}]] |
|
latent = torch.zeros([batch_size, 4, height // 8, width // 8]) |
|
return (positive, negative, {"samples":latent, "batch_index": [0] * batch_size}) |
|
|
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"StableZero123_Conditioning": StableZero123_Conditioning, |
|
"StableZero123_Conditioning_Batched": StableZero123_Conditioning_Batched, |
|
} |
|
|