|
import cv2 |
|
import numpy as np |
|
|
|
from .matlab_cp2tform import get_similarity_transform_for_cv2 |
|
|
|
|
|
REFERENCE_FACIAL_POINTS = [[30.29459953, 51.69630051], [65.53179932, 51.50139999], [48.02519989, 71.73660278], |
|
[33.54930115, 92.3655014], [62.72990036, 92.20410156]] |
|
|
|
DEFAULT_CROP_SIZE = (96, 112) |
|
|
|
|
|
class FaceWarpException(Exception): |
|
|
|
def __str__(self): |
|
return 'In File {}:{}'.format(__file__, super.__str__(self)) |
|
|
|
|
|
def get_reference_facial_points(output_size=None, inner_padding_factor=0.0, outer_padding=(0, 0), default_square=False): |
|
""" |
|
Function: |
|
---------- |
|
get reference 5 key points according to crop settings: |
|
0. Set default crop_size: |
|
if default_square: |
|
crop_size = (112, 112) |
|
else: |
|
crop_size = (96, 112) |
|
1. Pad the crop_size by inner_padding_factor in each side; |
|
2. Resize crop_size into (output_size - outer_padding*2), |
|
pad into output_size with outer_padding; |
|
3. Output reference_5point; |
|
Parameters: |
|
---------- |
|
@output_size: (w, h) or None |
|
size of aligned face image |
|
@inner_padding_factor: (w_factor, h_factor) |
|
padding factor for inner (w, h) |
|
@outer_padding: (w_pad, h_pad) |
|
each row is a pair of coordinates (x, y) |
|
@default_square: True or False |
|
if True: |
|
default crop_size = (112, 112) |
|
else: |
|
default crop_size = (96, 112); |
|
!!! make sure, if output_size is not None: |
|
(output_size - outer_padding) |
|
= some_scale * (default crop_size * (1.0 + |
|
inner_padding_factor)) |
|
Returns: |
|
---------- |
|
@reference_5point: 5x2 np.array |
|
each row is a pair of transformed coordinates (x, y) |
|
""" |
|
|
|
tmp_5pts = np.array(REFERENCE_FACIAL_POINTS) |
|
tmp_crop_size = np.array(DEFAULT_CROP_SIZE) |
|
|
|
|
|
if default_square: |
|
size_diff = max(tmp_crop_size) - tmp_crop_size |
|
tmp_5pts += size_diff / 2 |
|
tmp_crop_size += size_diff |
|
|
|
if (output_size and output_size[0] == tmp_crop_size[0] and output_size[1] == tmp_crop_size[1]): |
|
|
|
return tmp_5pts |
|
|
|
if (inner_padding_factor == 0 and outer_padding == (0, 0)): |
|
if output_size is None: |
|
return tmp_5pts |
|
else: |
|
raise FaceWarpException('No paddings to do, output_size must be None or {}'.format(tmp_crop_size)) |
|
|
|
|
|
if not (0 <= inner_padding_factor <= 1.0): |
|
raise FaceWarpException('Not (0 <= inner_padding_factor <= 1.0)') |
|
|
|
if ((inner_padding_factor > 0 or outer_padding[0] > 0 or outer_padding[1] > 0) and output_size is None): |
|
output_size = tmp_crop_size * \ |
|
(1 + inner_padding_factor * 2).astype(np.int32) |
|
output_size += np.array(outer_padding) |
|
if not (outer_padding[0] < output_size[0] and outer_padding[1] < output_size[1]): |
|
raise FaceWarpException('Not (outer_padding[0] < output_size[0] and outer_padding[1] < output_size[1])') |
|
|
|
|
|
if inner_padding_factor > 0: |
|
size_diff = tmp_crop_size * inner_padding_factor * 2 |
|
tmp_5pts += size_diff / 2 |
|
tmp_crop_size += np.round(size_diff).astype(np.int32) |
|
|
|
|
|
size_bf_outer_pad = np.array(output_size) - np.array(outer_padding) * 2 |
|
|
|
if size_bf_outer_pad[0] * tmp_crop_size[1] != size_bf_outer_pad[1] * tmp_crop_size[0]: |
|
raise FaceWarpException('Must have (output_size - outer_padding)' |
|
'= some_scale * (crop_size * (1.0 + inner_padding_factor)') |
|
|
|
scale_factor = size_bf_outer_pad[0].astype(np.float32) / tmp_crop_size[0] |
|
tmp_5pts = tmp_5pts * scale_factor |
|
|
|
|
|
tmp_crop_size = size_bf_outer_pad |
|
|
|
|
|
reference_5point = tmp_5pts + np.array(outer_padding) |
|
tmp_crop_size = output_size |
|
|
|
return reference_5point |
|
|
|
|
|
def get_affine_transform_matrix(src_pts, dst_pts): |
|
""" |
|
Function: |
|
---------- |
|
get affine transform matrix 'tfm' from src_pts to dst_pts |
|
Parameters: |
|
---------- |
|
@src_pts: Kx2 np.array |
|
source points matrix, each row is a pair of coordinates (x, y) |
|
@dst_pts: Kx2 np.array |
|
destination points matrix, each row is a pair of coordinates (x, y) |
|
Returns: |
|
---------- |
|
@tfm: 2x3 np.array |
|
transform matrix from src_pts to dst_pts |
|
""" |
|
|
|
tfm = np.float32([[1, 0, 0], [0, 1, 0]]) |
|
n_pts = src_pts.shape[0] |
|
ones = np.ones((n_pts, 1), src_pts.dtype) |
|
src_pts_ = np.hstack([src_pts, ones]) |
|
dst_pts_ = np.hstack([dst_pts, ones]) |
|
|
|
A, res, rank, s = np.linalg.lstsq(src_pts_, dst_pts_) |
|
|
|
if rank == 3: |
|
tfm = np.float32([[A[0, 0], A[1, 0], A[2, 0]], [A[0, 1], A[1, 1], A[2, 1]]]) |
|
elif rank == 2: |
|
tfm = np.float32([[A[0, 0], A[1, 0], 0], [A[0, 1], A[1, 1], 0]]) |
|
|
|
return tfm |
|
|
|
|
|
def warp_and_crop_face(src_img, facial_pts, reference_pts=None, crop_size=(96, 112), align_type='smilarity'): |
|
""" |
|
Function: |
|
---------- |
|
apply affine transform 'trans' to uv |
|
Parameters: |
|
---------- |
|
@src_img: 3x3 np.array |
|
input image |
|
@facial_pts: could be |
|
1)a list of K coordinates (x,y) |
|
or |
|
2) Kx2 or 2xK np.array |
|
each row or col is a pair of coordinates (x, y) |
|
@reference_pts: could be |
|
1) a list of K coordinates (x,y) |
|
or |
|
2) Kx2 or 2xK np.array |
|
each row or col is a pair of coordinates (x, y) |
|
or |
|
3) None |
|
if None, use default reference facial points |
|
@crop_size: (w, h) |
|
output face image size |
|
@align_type: transform type, could be one of |
|
1) 'similarity': use similarity transform |
|
2) 'cv2_affine': use the first 3 points to do affine transform, |
|
by calling cv2.getAffineTransform() |
|
3) 'affine': use all points to do affine transform |
|
Returns: |
|
---------- |
|
@face_img: output face image with size (w, h) = @crop_size |
|
""" |
|
|
|
if reference_pts is None: |
|
if crop_size[0] == 96 and crop_size[1] == 112: |
|
reference_pts = REFERENCE_FACIAL_POINTS |
|
else: |
|
default_square = False |
|
inner_padding_factor = 0 |
|
outer_padding = (0, 0) |
|
output_size = crop_size |
|
|
|
reference_pts = get_reference_facial_points(output_size, inner_padding_factor, outer_padding, |
|
default_square) |
|
|
|
ref_pts = np.float32(reference_pts) |
|
ref_pts_shp = ref_pts.shape |
|
if max(ref_pts_shp) < 3 or min(ref_pts_shp) != 2: |
|
raise FaceWarpException('reference_pts.shape must be (K,2) or (2,K) and K>2') |
|
|
|
if ref_pts_shp[0] == 2: |
|
ref_pts = ref_pts.T |
|
|
|
src_pts = np.float32(facial_pts) |
|
src_pts_shp = src_pts.shape |
|
if max(src_pts_shp) < 3 or min(src_pts_shp) != 2: |
|
raise FaceWarpException('facial_pts.shape must be (K,2) or (2,K) and K>2') |
|
|
|
if src_pts_shp[0] == 2: |
|
src_pts = src_pts.T |
|
|
|
if src_pts.shape != ref_pts.shape: |
|
raise FaceWarpException('facial_pts and reference_pts must have the same shape') |
|
|
|
if align_type == 'cv2_affine': |
|
tfm = cv2.getAffineTransform(src_pts[0:3], ref_pts[0:3]) |
|
elif align_type == 'affine': |
|
tfm = get_affine_transform_matrix(src_pts, ref_pts) |
|
else: |
|
tfm = get_similarity_transform_for_cv2(src_pts, ref_pts) |
|
|
|
face_img = cv2.warpAffine(src_img, tfm, (crop_size[0], crop_size[1])) |
|
|
|
return face_img |
|
|