|
import numpy as np |
|
from numpy.linalg import inv, lstsq |
|
from numpy.linalg import matrix_rank as rank |
|
from numpy.linalg import norm |
|
|
|
|
|
class MatlabCp2tormException(Exception): |
|
|
|
def __str__(self): |
|
return 'In File {}:{}'.format(__file__, super.__str__(self)) |
|
|
|
|
|
def tformfwd(trans, uv): |
|
""" |
|
Function: |
|
---------- |
|
apply affine transform 'trans' to uv |
|
|
|
Parameters: |
|
---------- |
|
@trans: 3x3 np.array |
|
transform matrix |
|
@uv: Kx2 np.array |
|
each row is a pair of coordinates (x, y) |
|
|
|
Returns: |
|
---------- |
|
@xy: Kx2 np.array |
|
each row is a pair of transformed coordinates (x, y) |
|
""" |
|
uv = np.hstack((uv, np.ones((uv.shape[0], 1)))) |
|
xy = np.dot(uv, trans) |
|
xy = xy[:, 0:-1] |
|
return xy |
|
|
|
|
|
def tforminv(trans, uv): |
|
""" |
|
Function: |
|
---------- |
|
apply the inverse of affine transform 'trans' to uv |
|
|
|
Parameters: |
|
---------- |
|
@trans: 3x3 np.array |
|
transform matrix |
|
@uv: Kx2 np.array |
|
each row is a pair of coordinates (x, y) |
|
|
|
Returns: |
|
---------- |
|
@xy: Kx2 np.array |
|
each row is a pair of inverse-transformed coordinates (x, y) |
|
""" |
|
Tinv = inv(trans) |
|
xy = tformfwd(Tinv, uv) |
|
return xy |
|
|
|
|
|
def findNonreflectiveSimilarity(uv, xy, options=None): |
|
options = {'K': 2} |
|
|
|
K = options['K'] |
|
M = xy.shape[0] |
|
x = xy[:, 0].reshape((-1, 1)) |
|
y = xy[:, 1].reshape((-1, 1)) |
|
|
|
tmp1 = np.hstack((x, y, np.ones((M, 1)), np.zeros((M, 1)))) |
|
tmp2 = np.hstack((y, -x, np.zeros((M, 1)), np.ones((M, 1)))) |
|
X = np.vstack((tmp1, tmp2)) |
|
|
|
u = uv[:, 0].reshape((-1, 1)) |
|
v = uv[:, 1].reshape((-1, 1)) |
|
U = np.vstack((u, v)) |
|
|
|
|
|
if rank(X) >= 2 * K: |
|
r, _, _, _ = lstsq(X, U, rcond=-1) |
|
r = np.squeeze(r) |
|
else: |
|
raise Exception('cp2tform:twoUniquePointsReq') |
|
sc = r[0] |
|
ss = r[1] |
|
tx = r[2] |
|
ty = r[3] |
|
|
|
Tinv = np.array([[sc, -ss, 0], [ss, sc, 0], [tx, ty, 1]]) |
|
T = inv(Tinv) |
|
T[:, 2] = np.array([0, 0, 1]) |
|
|
|
return T, Tinv |
|
|
|
|
|
def findSimilarity(uv, xy, options=None): |
|
options = {'K': 2} |
|
|
|
|
|
|
|
|
|
|
|
trans1, trans1_inv = findNonreflectiveSimilarity(uv, xy, options) |
|
|
|
|
|
|
|
|
|
xyR = xy |
|
xyR[:, 0] = -1 * xyR[:, 0] |
|
|
|
trans2r, trans2r_inv = findNonreflectiveSimilarity(uv, xyR, options) |
|
|
|
|
|
TreflectY = np.array([[-1, 0, 0], [0, 1, 0], [0, 0, 1]]) |
|
|
|
trans2 = np.dot(trans2r, TreflectY) |
|
|
|
|
|
xy1 = tformfwd(trans1, uv) |
|
norm1 = norm(xy1 - xy) |
|
|
|
xy2 = tformfwd(trans2, uv) |
|
norm2 = norm(xy2 - xy) |
|
|
|
if norm1 <= norm2: |
|
return trans1, trans1_inv |
|
else: |
|
trans2_inv = inv(trans2) |
|
return trans2, trans2_inv |
|
|
|
|
|
def get_similarity_transform(src_pts, dst_pts, reflective=True): |
|
""" |
|
Function: |
|
---------- |
|
Find Similarity Transform Matrix 'trans': |
|
u = src_pts[:, 0] |
|
v = src_pts[:, 1] |
|
x = dst_pts[:, 0] |
|
y = dst_pts[:, 1] |
|
[x, y, 1] = [u, v, 1] * trans |
|
|
|
Parameters: |
|
---------- |
|
@src_pts: Kx2 np.array |
|
source points, each row is a pair of coordinates (x, y) |
|
@dst_pts: Kx2 np.array |
|
destination points, each row is a pair of transformed |
|
coordinates (x, y) |
|
@reflective: True or False |
|
if True: |
|
use reflective similarity transform |
|
else: |
|
use non-reflective similarity transform |
|
|
|
Returns: |
|
---------- |
|
@trans: 3x3 np.array |
|
transform matrix from uv to xy |
|
trans_inv: 3x3 np.array |
|
inverse of trans, transform matrix from xy to uv |
|
""" |
|
|
|
if reflective: |
|
trans, trans_inv = findSimilarity(src_pts, dst_pts) |
|
else: |
|
trans, trans_inv = findNonreflectiveSimilarity(src_pts, dst_pts) |
|
|
|
return trans, trans_inv |
|
|
|
|
|
def cvt_tform_mat_for_cv2(trans): |
|
""" |
|
Function: |
|
---------- |
|
Convert Transform Matrix 'trans' into 'cv2_trans' which could be |
|
directly used by cv2.warpAffine(): |
|
u = src_pts[:, 0] |
|
v = src_pts[:, 1] |
|
x = dst_pts[:, 0] |
|
y = dst_pts[:, 1] |
|
[x, y].T = cv_trans * [u, v, 1].T |
|
|
|
Parameters: |
|
---------- |
|
@trans: 3x3 np.array |
|
transform matrix from uv to xy |
|
|
|
Returns: |
|
---------- |
|
@cv2_trans: 2x3 np.array |
|
transform matrix from src_pts to dst_pts, could be directly used |
|
for cv2.warpAffine() |
|
""" |
|
cv2_trans = trans[:, 0:2].T |
|
|
|
return cv2_trans |
|
|
|
|
|
def get_similarity_transform_for_cv2(src_pts, dst_pts, reflective=True): |
|
""" |
|
Function: |
|
---------- |
|
Find Similarity Transform Matrix 'cv2_trans' which could be |
|
directly used by cv2.warpAffine(): |
|
u = src_pts[:, 0] |
|
v = src_pts[:, 1] |
|
x = dst_pts[:, 0] |
|
y = dst_pts[:, 1] |
|
[x, y].T = cv_trans * [u, v, 1].T |
|
|
|
Parameters: |
|
---------- |
|
@src_pts: Kx2 np.array |
|
source points, each row is a pair of coordinates (x, y) |
|
@dst_pts: Kx2 np.array |
|
destination points, each row is a pair of transformed |
|
coordinates (x, y) |
|
reflective: True or False |
|
if True: |
|
use reflective similarity transform |
|
else: |
|
use non-reflective similarity transform |
|
|
|
Returns: |
|
---------- |
|
@cv2_trans: 2x3 np.array |
|
transform matrix from src_pts to dst_pts, could be directly used |
|
for cv2.warpAffine() |
|
""" |
|
trans, trans_inv = get_similarity_transform(src_pts, dst_pts, reflective) |
|
cv2_trans = cvt_tform_mat_for_cv2(trans) |
|
|
|
return cv2_trans |
|
|
|
|
|
if __name__ == '__main__': |
|
""" |
|
u = [0, 6, -2] |
|
v = [0, 3, 5] |
|
x = [-1, 0, 4] |
|
y = [-1, -10, 4] |
|
|
|
# In Matlab, run: |
|
# |
|
# uv = [u'; v']; |
|
# xy = [x'; y']; |
|
# tform_sim=cp2tform(uv,xy,'similarity'); |
|
# |
|
# trans = tform_sim.tdata.T |
|
# ans = |
|
# -0.0764 -1.6190 0 |
|
# 1.6190 -0.0764 0 |
|
# -3.2156 0.0290 1.0000 |
|
# trans_inv = tform_sim.tdata.Tinv |
|
# ans = |
|
# |
|
# -0.0291 0.6163 0 |
|
# -0.6163 -0.0291 0 |
|
# -0.0756 1.9826 1.0000 |
|
# xy_m=tformfwd(tform_sim, u,v) |
|
# |
|
# xy_m = |
|
# |
|
# -3.2156 0.0290 |
|
# 1.1833 -9.9143 |
|
# 5.0323 2.8853 |
|
# uv_m=tforminv(tform_sim, x,y) |
|
# |
|
# uv_m = |
|
# |
|
# 0.5698 1.3953 |
|
# 6.0872 2.2733 |
|
# -2.6570 4.3314 |
|
""" |
|
u = [0, 6, -2] |
|
v = [0, 3, 5] |
|
x = [-1, 0, 4] |
|
y = [-1, -10, 4] |
|
|
|
uv = np.array((u, v)).T |
|
xy = np.array((x, y)).T |
|
|
|
print('\n--->uv:') |
|
print(uv) |
|
print('\n--->xy:') |
|
print(xy) |
|
|
|
trans, trans_inv = get_similarity_transform(uv, xy) |
|
|
|
print('\n--->trans matrix:') |
|
print(trans) |
|
|
|
print('\n--->trans_inv matrix:') |
|
print(trans_inv) |
|
|
|
print('\n---> apply transform to uv') |
|
print('\nxy_m = uv_augmented * trans') |
|
uv_aug = np.hstack((uv, np.ones((uv.shape[0], 1)))) |
|
xy_m = np.dot(uv_aug, trans) |
|
print(xy_m) |
|
|
|
print('\nxy_m = tformfwd(trans, uv)') |
|
xy_m = tformfwd(trans, uv) |
|
print(xy_m) |
|
|
|
print('\n---> apply inverse transform to xy') |
|
print('\nuv_m = xy_augmented * trans_inv') |
|
xy_aug = np.hstack((xy, np.ones((xy.shape[0], 1)))) |
|
uv_m = np.dot(xy_aug, trans_inv) |
|
print(uv_m) |
|
|
|
print('\nuv_m = tformfwd(trans_inv, xy)') |
|
uv_m = tformfwd(trans_inv, xy) |
|
print(uv_m) |
|
|
|
uv_m = tforminv(trans, xy) |
|
print('\nuv_m = tforminv(trans, xy)') |
|
print(uv_m) |
|
|