crystantine
commited on
Upload 24 files
Browse files- README.md +250 -0
- advanced.png +3 -0
- app.py +1015 -0
- flags.png +3 -0
- flow.gif +3 -0
- icon.png +3 -0
- install.js +96 -0
- models/.gitkeep +0 -0
- models/clip/.gitkeep +0 -0
- models/unet/.gitkeep +0 -0
- models/vae/.gitkeep +0 -0
- outputs/.gitkeep +0 -0
- pinokio.js +95 -0
- pinokio_meta.json +38 -0
- publish_to_hf.png +3 -0
- requirements.txt +34 -0
- reset.js +13 -0
- sample.png +3 -0
- sample_fields.png +3 -0
- screenshot.png +3 -0
- seed.gif +3 -0
- start.js +34 -0
- torch.js +75 -0
- update.js +46 -0
README.md
ADDED
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Flux Gym
|
2 |
+
|
3 |
+
Dead simple web UI for training FLUX LoRA **with LOW VRAM (12GB/16GB/20GB) support.**
|
4 |
+
|
5 |
+
- **Frontend:** The WebUI forked from [AI-Toolkit](https://github.com/ostris/ai-toolkit) (Gradio UI created by https://x.com/multimodalart)
|
6 |
+
- **Backend:** The Training script powered by [Kohya Scripts](https://github.com/kohya-ss/sd-scripts)
|
7 |
+
|
8 |
+
FluxGym supports 100% of Kohya sd-scripts features through an [Advanced](#advanced) tab, which is hidden by default.
|
9 |
+
|
10 |
+
![screenshot.png](screenshot.png)
|
11 |
+
|
12 |
+
---
|
13 |
+
|
14 |
+
|
15 |
+
# What is this?
|
16 |
+
|
17 |
+
1. I wanted a super simple UI for training Flux LoRAs
|
18 |
+
2. The [AI-Toolkit](https://github.com/ostris/ai-toolkit) project is great, and the gradio UI contribution by [@multimodalart](https://x.com/multimodalart) is perfect, but the project only works for 24GB VRAM.
|
19 |
+
3. [Kohya Scripts](https://github.com/kohya-ss/sd-scripts) are very flexible and powerful for training FLUX, but you need to run in terminal.
|
20 |
+
4. What if you could have the simplicity of AI-Toolkit WebUI and the flexibility of Kohya Scripts?
|
21 |
+
5. Flux Gym was born. Supports 12GB, 16GB, 20GB VRAMs, and extensible since it uses Kohya Scripts underneath.
|
22 |
+
|
23 |
+
---
|
24 |
+
|
25 |
+
# News
|
26 |
+
|
27 |
+
- September 16: Added "Publish to Huggingface" + 100% Kohya sd-scripts feature support: https://x.com/cocktailpeanut/status/1835719701172756592
|
28 |
+
- September 11: Automatic Sample Image Generation + Custom Resolution: https://x.com/cocktailpeanut/status/1833881392482066638
|
29 |
+
|
30 |
+
---
|
31 |
+
|
32 |
+
# How people are using Fluxgym
|
33 |
+
|
34 |
+
Here are people using Fluxgym to locally train Lora sharing their experience:
|
35 |
+
|
36 |
+
https://pinokio.computer/item?uri=https://github.com/cocktailpeanut/fluxgym
|
37 |
+
|
38 |
+
|
39 |
+
# More Info
|
40 |
+
|
41 |
+
To learn more, check out this X thread: https://x.com/cocktailpeanut/status/1832084951115972653
|
42 |
+
|
43 |
+
# Install
|
44 |
+
|
45 |
+
## 1. One-Click Install
|
46 |
+
|
47 |
+
You can automatically install and launch everything locally with Pinokio 1-click launcher: https://pinokio.computer/item?uri=https://github.com/cocktailpeanut/fluxgym
|
48 |
+
|
49 |
+
|
50 |
+
## 2. Install Manually
|
51 |
+
|
52 |
+
First clone Fluxgym and kohya-ss/sd-scripts:
|
53 |
+
|
54 |
+
```
|
55 |
+
git clone https://github.com/cocktailpeanut/fluxgym
|
56 |
+
cd fluxgym
|
57 |
+
git clone -b sd3 https://github.com/kohya-ss/sd-scripts
|
58 |
+
```
|
59 |
+
|
60 |
+
Your folder structure will look like this:
|
61 |
+
|
62 |
+
```
|
63 |
+
/fluxgym
|
64 |
+
app.py
|
65 |
+
requirements.txt
|
66 |
+
/sd-scripts
|
67 |
+
```
|
68 |
+
|
69 |
+
Now activate a venv from the root `fluxgym` folder:
|
70 |
+
|
71 |
+
If you're on Windows:
|
72 |
+
|
73 |
+
```
|
74 |
+
python -m venv env
|
75 |
+
env\Scripts\activate
|
76 |
+
```
|
77 |
+
|
78 |
+
If your're on Linux:
|
79 |
+
|
80 |
+
```
|
81 |
+
python -m venv env
|
82 |
+
source env/bin/activate
|
83 |
+
```
|
84 |
+
|
85 |
+
This will create an `env` folder right below the `fluxgym` folder:
|
86 |
+
|
87 |
+
```
|
88 |
+
/fluxgym
|
89 |
+
app.py
|
90 |
+
requirements.txt
|
91 |
+
/sd-scripts
|
92 |
+
/env
|
93 |
+
```
|
94 |
+
|
95 |
+
Now go to the `sd-scripts` folder and install dependencies to the activated environment:
|
96 |
+
|
97 |
+
```
|
98 |
+
cd sd-scripts
|
99 |
+
pip install -r requirements.txt
|
100 |
+
```
|
101 |
+
|
102 |
+
Now come back to the root folder and install the app dependencies:
|
103 |
+
|
104 |
+
```
|
105 |
+
cd ..
|
106 |
+
pip install -r requirements.txt
|
107 |
+
```
|
108 |
+
|
109 |
+
Finally, install pytorch Nightly:
|
110 |
+
|
111 |
+
```
|
112 |
+
pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu121
|
113 |
+
```
|
114 |
+
|
115 |
+
Now let's download the model checkpoints.
|
116 |
+
|
117 |
+
First, download the following models under the `models/clip` foder:
|
118 |
+
|
119 |
+
- https://huggingface.co/comfyanonymous/flux_text_encoders/resolve/main/clip_l.safetensors?download=true
|
120 |
+
- https://huggingface.co/comfyanonymous/flux_text_encoders/resolve/main/t5xxl_fp16.safetensors?download=true
|
121 |
+
|
122 |
+
Second, download the following model under the `models/vae` folder:
|
123 |
+
|
124 |
+
- https://huggingface.co/cocktailpeanut/xulf-dev/resolve/main/ae.sft?download=true
|
125 |
+
|
126 |
+
Finally, download the following model under the `models/unet` folder:
|
127 |
+
|
128 |
+
- https://huggingface.co/cocktailpeanut/xulf-dev/resolve/main/flux1-dev.sft?download=true
|
129 |
+
|
130 |
+
The result file structure will be something like:
|
131 |
+
|
132 |
+
```
|
133 |
+
/models
|
134 |
+
/clip
|
135 |
+
clip_l.safetensors
|
136 |
+
t5xxl_fp16.safetensors
|
137 |
+
/unet
|
138 |
+
flux1-dev.sft
|
139 |
+
/vae
|
140 |
+
ae.sft
|
141 |
+
/sd-scripts
|
142 |
+
/outputs
|
143 |
+
/env
|
144 |
+
app.py
|
145 |
+
requirements.txt
|
146 |
+
...
|
147 |
+
```
|
148 |
+
|
149 |
+
# Start
|
150 |
+
|
151 |
+
Go back to the root `fluxgym` folder, with the venv activated, run:
|
152 |
+
|
153 |
+
```
|
154 |
+
python app.py
|
155 |
+
```
|
156 |
+
|
157 |
+
> Make sure to have the venv activated before running `python app.py`.
|
158 |
+
>
|
159 |
+
> Windows: `env/Scripts/activate`
|
160 |
+
> Linux: `source env/bin/activate`
|
161 |
+
|
162 |
+
# Usage
|
163 |
+
|
164 |
+
The usage is pretty straightforward:
|
165 |
+
|
166 |
+
1. Enter the lora info
|
167 |
+
2. Upload images and caption them (using the trigger word)
|
168 |
+
3. Click "start".
|
169 |
+
|
170 |
+
That's all!
|
171 |
+
|
172 |
+
![flow.gif](flow.gif)
|
173 |
+
|
174 |
+
# Configuration
|
175 |
+
|
176 |
+
## Sample Images
|
177 |
+
|
178 |
+
By default fluxgym doesn't generate any sample images during training.
|
179 |
+
|
180 |
+
You can however configure Fluxgym to automatically generate sample images for every N steps. Here's what it looks like:
|
181 |
+
|
182 |
+
![sample.png](sample.png)
|
183 |
+
|
184 |
+
To turn this on, just set the two fields:
|
185 |
+
|
186 |
+
1. **Sample Image Prompts:** These prompts will be used to automatically generate images during training. If you want multiple, separate teach prompt with new line.
|
187 |
+
2. **Sample Image Every N Steps:** If your "Expected training steps" is 960 and your "Sample Image Every N Steps" is 100, the images will be generated at step 100, 200, 300, 400, 500, 600, 700, 800, 900, for EACH prompt.
|
188 |
+
|
189 |
+
![sample_fields.png](sample_fields.png)
|
190 |
+
|
191 |
+
## Advanced Sample Images
|
192 |
+
|
193 |
+
Thanks to the built-in syntax from [kohya/sd-scripts](https://github.com/kohya-ss/sd-scripts?tab=readme-ov-file#sample-image-generation-during-training), you can control exactly how the sample images are generated during the training phase:
|
194 |
+
|
195 |
+
Let's say the trigger word is **hrld person.** Normally you would try sample prompts like:
|
196 |
+
|
197 |
+
```
|
198 |
+
hrld person is riding a bike
|
199 |
+
hrld person is a body builder
|
200 |
+
hrld person is a rock star
|
201 |
+
```
|
202 |
+
|
203 |
+
But for every prompt you can include **advanced flags** to fully control the image generation process. For example, the `--d` flag lets you specify the SEED.
|
204 |
+
|
205 |
+
Specifying a seed means every sample image will use that exact seed, which means you can literally see the LoRA evolve. Here's an example usage:
|
206 |
+
|
207 |
+
```
|
208 |
+
hrld person is riding a bike --d 42
|
209 |
+
hrld person is a body builder --d 42
|
210 |
+
hrld person is a rock star --d 42
|
211 |
+
```
|
212 |
+
|
213 |
+
Here's what it looks like in the UI:
|
214 |
+
|
215 |
+
![flags.png](flags.png)
|
216 |
+
|
217 |
+
And here are the results:
|
218 |
+
|
219 |
+
![seed.gif](seed.gif)
|
220 |
+
|
221 |
+
In addition to the `--d` flag, here are other flags you can use:
|
222 |
+
|
223 |
+
|
224 |
+
- `--n`: Negative prompt up to the next option.
|
225 |
+
- `--w`: Specifies the width of the generated image.
|
226 |
+
- `--h`: Specifies the height of the generated image.
|
227 |
+
- `--d`: Specifies the seed of the generated image.
|
228 |
+
- `--l`: Specifies the CFG scale of the generated image.
|
229 |
+
- `--s`: Specifies the number of steps in the generation.
|
230 |
+
|
231 |
+
The prompt weighting such as `( )` and `[ ]` also work. (Learn more about [Attention/Emphasis](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#attentionemphasis))
|
232 |
+
|
233 |
+
## Publishing to Huggingface
|
234 |
+
|
235 |
+
1. Get your Huggingface Token from https://huggingface.co/settings/tokens
|
236 |
+
2. Enter the token in the "Huggingface Token" field and click "Login". This will save the token text in a local file named `HF_TOKEN` (All local and private).
|
237 |
+
3. Once you're logged in, you will be able to select a trained LoRA from the dropdown, edit the name if you want, and publish to Huggingface.
|
238 |
+
|
239 |
+
![publish_to_hf.png](publish_to_hf.png)
|
240 |
+
|
241 |
+
|
242 |
+
## Advanced
|
243 |
+
|
244 |
+
The advanced tab is automatically constructed by parsing the launch flags available to the latest version of [kohya sd-scripts](https://github.com/kohya-ss/sd-scripts). This means Fluxgym is a full fledged UI for using the Kohya script.
|
245 |
+
|
246 |
+
> By default the advanced tab is hidden. You can click the "advanced" accordion to expand it.
|
247 |
+
|
248 |
+
![advanced.png](advanced.png)
|
249 |
+
|
250 |
+
|
advanced.png
ADDED
Git LFS Details
|
app.py
ADDED
@@ -0,0 +1,1015 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import subprocess
|
4 |
+
import gradio as gr
|
5 |
+
from PIL import Image
|
6 |
+
import torch
|
7 |
+
import uuid
|
8 |
+
import shutil
|
9 |
+
import json
|
10 |
+
import yaml
|
11 |
+
from slugify import slugify
|
12 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
13 |
+
from gradio_logsview import LogsView, LogsViewRunner
|
14 |
+
from huggingface_hub import hf_hub_download, HfApi
|
15 |
+
from library import flux_train_utils, huggingface_util
|
16 |
+
from argparse import Namespace
|
17 |
+
import train_network
|
18 |
+
import toml
|
19 |
+
import re
|
20 |
+
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
21 |
+
os.environ['GRADIO_ANALYTICS_ENABLED'] = '0'
|
22 |
+
sys.path.insert(0, os.getcwd())
|
23 |
+
sys.path.append(os.path.join(os.path.dirname(__file__), 'sd-scripts'))
|
24 |
+
MAX_IMAGES = 150
|
25 |
+
def readme(lora_name, instance_prompt, sample_prompts):
|
26 |
+
base_model = "black-forest-labs/FLUX.1-dev"
|
27 |
+
license = "other"
|
28 |
+
license_name = "flux-1-dev-non-commercial-license"
|
29 |
+
license_link = "https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md"
|
30 |
+
tags = [ "text-to-image", "flux", "lora", "diffusers", "template:sd-lora", "fluxgym" ]
|
31 |
+
|
32 |
+
# widgets
|
33 |
+
widgets = []
|
34 |
+
sample_image_paths = []
|
35 |
+
output_name = slugify(lora_name)
|
36 |
+
samples_dir = resolve_path_without_quotes(f"outputs/{output_name}/sample")
|
37 |
+
for filename in os.listdir(samples_dir):
|
38 |
+
# Filename Schema: [name]_[steps]_[index]_[timestamp].png
|
39 |
+
match = re.search(r"_(\d+)_(\d+)_(\d+)\.png$", filename)
|
40 |
+
if match:
|
41 |
+
steps, index, timestamp = int(match.group(1)), int(match.group(2)), int(match.group(3))
|
42 |
+
sample_image_paths.append((steps, index, f"sample/{filename}"))
|
43 |
+
|
44 |
+
# Sort by numeric index
|
45 |
+
sample_image_paths.sort(key=lambda x: x[0], reverse=True)
|
46 |
+
|
47 |
+
final_sample_image_paths = sample_image_paths[:len(sample_prompts)]
|
48 |
+
final_sample_image_paths.sort(key=lambda x: x[1])
|
49 |
+
for i, prompt in enumerate(sample_prompts):
|
50 |
+
_, _, image_path = final_sample_image_paths[i]
|
51 |
+
widgets.append(
|
52 |
+
{
|
53 |
+
"text": prompt,
|
54 |
+
"output": {
|
55 |
+
"url": image_path
|
56 |
+
},
|
57 |
+
}
|
58 |
+
)
|
59 |
+
dtype = "torch.bfloat16"
|
60 |
+
# Construct the README content
|
61 |
+
readme_content = f"""---
|
62 |
+
tags:
|
63 |
+
{yaml.dump(tags, indent=4).strip()}
|
64 |
+
{"widget:" if os.path.isdir(samples_dir) else ""}
|
65 |
+
{yaml.dump(widgets, indent=4).strip() if widgets else ""}
|
66 |
+
base_model: {base_model}
|
67 |
+
{"instance_prompt: " + instance_prompt if instance_prompt else ""}
|
68 |
+
license: {license}
|
69 |
+
{'license_name: ' + license_name if license == "other" else ""}
|
70 |
+
{'license_link: ' + license_link if license == "other" else ""}
|
71 |
+
---
|
72 |
+
|
73 |
+
# {lora_name}
|
74 |
+
|
75 |
+
A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym)
|
76 |
+
|
77 |
+
<Gallery />
|
78 |
+
|
79 |
+
## Trigger words
|
80 |
+
|
81 |
+
{"You should use `" + instance_prompt + "` to trigger the image generation." if instance_prompt else "No trigger words defined."}
|
82 |
+
|
83 |
+
## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc.
|
84 |
+
|
85 |
+
Weights for this model are available in Safetensors format.
|
86 |
+
|
87 |
+
"""
|
88 |
+
return readme_content
|
89 |
+
|
90 |
+
def account_hf():
|
91 |
+
try:
|
92 |
+
with open("HF_TOKEN", "r") as file:
|
93 |
+
token = file.read()
|
94 |
+
api = HfApi(token=token)
|
95 |
+
try:
|
96 |
+
account = api.whoami()
|
97 |
+
return { "token": token, "account": account['name'] }
|
98 |
+
except:
|
99 |
+
return None
|
100 |
+
except:
|
101 |
+
return None
|
102 |
+
|
103 |
+
"""
|
104 |
+
hf_logout.click(fn=logout_hf, outputs=[hf_token, hf_login, hf_logout, repo_owner])
|
105 |
+
"""
|
106 |
+
def logout_hf():
|
107 |
+
os.remove("HF_TOKEN")
|
108 |
+
global current_account
|
109 |
+
current_account = account_hf()
|
110 |
+
print(f"current_account={current_account}")
|
111 |
+
return gr.update(value=""), gr.update(visible=True), gr.update(visible=False), gr.update(value="", visible=False)
|
112 |
+
|
113 |
+
|
114 |
+
"""
|
115 |
+
hf_login.click(fn=login_hf, inputs=[hf_token], outputs=[hf_token, hf_login, hf_logout, repo_owner])
|
116 |
+
"""
|
117 |
+
def login_hf(hf_token):
|
118 |
+
api = HfApi(token=hf_token)
|
119 |
+
try:
|
120 |
+
account = api.whoami()
|
121 |
+
if account != None:
|
122 |
+
if "name" in account:
|
123 |
+
with open("HF_TOKEN", "w") as file:
|
124 |
+
file.write(hf_token)
|
125 |
+
global current_account
|
126 |
+
current_account = account_hf()
|
127 |
+
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(value=current_account["account"], visible=True)
|
128 |
+
return gr.update(), gr.update(), gr.update(), gr.update()
|
129 |
+
except:
|
130 |
+
print(f"incorrect hf_token")
|
131 |
+
return gr.update(), gr.update(), gr.update(), gr.update()
|
132 |
+
|
133 |
+
def upload_hf(lora_rows, repo_owner, repo_name, repo_visibility, hf_token):
|
134 |
+
src = lora_rows
|
135 |
+
repo_id = f"{repo_owner}/{repo_name}"
|
136 |
+
gr.Info(f"Uploading to Huggingface. Please Stand by...", duration=None)
|
137 |
+
print(f"repo_id={repo_id} repo_visibility={repo_visibility} src={src}")
|
138 |
+
lora_name = os.path.basename(src)
|
139 |
+
dataset_toml_path = os.path.normpath(os.path.join(src, "dataset.toml"))
|
140 |
+
print(f"lora_name={lora_name}, dataset_toml_path={dataset_toml_path}")
|
141 |
+
with open(dataset_toml_path, 'r') as f:
|
142 |
+
config = toml.load(f)
|
143 |
+
concept_sentence = config['datasets'][0]['subsets'][0]['class_tokens']
|
144 |
+
print(f"concept_sentence={concept_sentence}")
|
145 |
+
# Generate README
|
146 |
+
output_name = slugify(lora_name)
|
147 |
+
print(f"lora_name {lora_name}, concept_sentence={concept_sentence}, output_name={output_name}")
|
148 |
+
sample_prompts_path = resolve_path_without_quotes(f"outputs/{output_name}/sample_prompts.txt")
|
149 |
+
with open(sample_prompts_path, "r", encoding="utf-8") as f:
|
150 |
+
lines = f.readlines()
|
151 |
+
sample_prompts = [line.strip() for line in lines if len(line.strip()) > 0 and line[0] != "#"]
|
152 |
+
md = readme(lora_name, concept_sentence, sample_prompts)
|
153 |
+
# Write README
|
154 |
+
readme_path = resolve_path_without_quotes(f"outputs/{output_name}/README.md")
|
155 |
+
with open(readme_path, "w", encoding="utf-8") as f:
|
156 |
+
f.write(md)
|
157 |
+
args = Namespace(
|
158 |
+
huggingface_repo_id=repo_id,
|
159 |
+
huggingface_repo_type="model",
|
160 |
+
huggingface_repo_visibility=repo_visibility,
|
161 |
+
huggingface_path_in_repo="",
|
162 |
+
huggingface_token=hf_token,
|
163 |
+
async_upload=False
|
164 |
+
)
|
165 |
+
print(f"upload_hf args={args}")
|
166 |
+
huggingface_util.upload(args=args, src=src)
|
167 |
+
gr.Info(f"[Upload Complete] https://huggingface.co/{repo_id}", duration=None)
|
168 |
+
|
169 |
+
def load_captioning(uploaded_files, concept_sentence):
|
170 |
+
uploaded_images = [file for file in uploaded_files if not file.endswith('.txt')]
|
171 |
+
txt_files = [file for file in uploaded_files if file.endswith('.txt')]
|
172 |
+
txt_files_dict = {os.path.splitext(os.path.basename(txt_file))[0]: txt_file for txt_file in txt_files}
|
173 |
+
updates = []
|
174 |
+
if len(uploaded_images) <= 1:
|
175 |
+
raise gr.Error(
|
176 |
+
"Please upload at least 2 images to train your model (the ideal number with default settings is between 4-30)"
|
177 |
+
)
|
178 |
+
elif len(uploaded_images) > MAX_IMAGES:
|
179 |
+
raise gr.Error(f"For now, only {MAX_IMAGES} or less images are allowed for training")
|
180 |
+
# Update for the captioning_area
|
181 |
+
# for _ in range(3):
|
182 |
+
updates.append(gr.update(visible=True))
|
183 |
+
# Update visibility and image for each captioning row and image
|
184 |
+
for i in range(1, MAX_IMAGES + 1):
|
185 |
+
# Determine if the current row and image should be visible
|
186 |
+
visible = i <= len(uploaded_images)
|
187 |
+
|
188 |
+
# Update visibility of the captioning row
|
189 |
+
updates.append(gr.update(visible=visible))
|
190 |
+
|
191 |
+
# Update for image component - display image if available, otherwise hide
|
192 |
+
image_value = uploaded_images[i - 1] if visible else None
|
193 |
+
updates.append(gr.update(value=image_value, visible=visible))
|
194 |
+
|
195 |
+
corresponding_caption = False
|
196 |
+
if(image_value):
|
197 |
+
base_name = os.path.splitext(os.path.basename(image_value))[0]
|
198 |
+
if base_name in txt_files_dict:
|
199 |
+
with open(txt_files_dict[base_name], 'r') as file:
|
200 |
+
corresponding_caption = file.read()
|
201 |
+
|
202 |
+
# Update value of captioning area
|
203 |
+
text_value = corresponding_caption if visible and corresponding_caption else concept_sentence if visible and concept_sentence else None
|
204 |
+
updates.append(gr.update(value=text_value, visible=visible))
|
205 |
+
|
206 |
+
# Update for the sample caption area
|
207 |
+
updates.append(gr.update(visible=True))
|
208 |
+
updates.append(gr.update(visible=True))
|
209 |
+
|
210 |
+
return updates
|
211 |
+
|
212 |
+
def hide_captioning():
|
213 |
+
return gr.update(visible=False), gr.update(visible=False)
|
214 |
+
|
215 |
+
def resize_image(image_path, output_path, size):
|
216 |
+
with Image.open(image_path) as img:
|
217 |
+
width, height = img.size
|
218 |
+
if width < height:
|
219 |
+
new_width = size
|
220 |
+
new_height = int((size/width) * height)
|
221 |
+
else:
|
222 |
+
new_height = size
|
223 |
+
new_width = int((size/height) * width)
|
224 |
+
print(f"resize {image_path} : {new_width}x{new_height}")
|
225 |
+
img_resized = img.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
226 |
+
img_resized.save(output_path)
|
227 |
+
|
228 |
+
def create_dataset(destination_folder, size, *inputs):
|
229 |
+
print("Creating dataset")
|
230 |
+
images = inputs[0]
|
231 |
+
if not os.path.exists(destination_folder):
|
232 |
+
os.makedirs(destination_folder)
|
233 |
+
|
234 |
+
for index, image in enumerate(images):
|
235 |
+
# copy the images to the datasets folder
|
236 |
+
new_image_path = shutil.copy(image, destination_folder)
|
237 |
+
|
238 |
+
# if it's a caption text file skip the next bit
|
239 |
+
ext = os.path.splitext(new_image_path)[-1].lower()
|
240 |
+
if ext == '.txt':
|
241 |
+
continue
|
242 |
+
|
243 |
+
# resize the images
|
244 |
+
resize_image(new_image_path, new_image_path, size)
|
245 |
+
|
246 |
+
# copy the captions
|
247 |
+
|
248 |
+
original_caption = inputs[index + 1]
|
249 |
+
|
250 |
+
image_file_name = os.path.basename(new_image_path)
|
251 |
+
caption_file_name = os.path.splitext(image_file_name)[0] + ".txt"
|
252 |
+
caption_path = resolve_path_without_quotes(os.path.join(destination_folder, caption_file_name))
|
253 |
+
print(f"image_path={new_image_path}, caption_path = {caption_path}, original_caption={original_caption}")
|
254 |
+
with open(caption_path, 'w') as file:
|
255 |
+
file.write(original_caption)
|
256 |
+
|
257 |
+
print(f"destination_folder {destination_folder}")
|
258 |
+
return destination_folder
|
259 |
+
|
260 |
+
|
261 |
+
def run_captioning(images, concept_sentence, *captions):
|
262 |
+
print(f"run_captioning")
|
263 |
+
print(f"concept sentence {concept_sentence}")
|
264 |
+
print(f"captions {captions}")
|
265 |
+
#Load internally to not consume resources for training
|
266 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
267 |
+
print(f"device={device}")
|
268 |
+
torch_dtype = torch.float16
|
269 |
+
model = AutoModelForCausalLM.from_pretrained(
|
270 |
+
"multimodalart/Florence-2-large-no-flash-attn", torch_dtype=torch_dtype, trust_remote_code=True
|
271 |
+
).to(device)
|
272 |
+
processor = AutoProcessor.from_pretrained("multimodalart/Florence-2-large-no-flash-attn", trust_remote_code=True)
|
273 |
+
|
274 |
+
captions = list(captions)
|
275 |
+
for i, image_path in enumerate(images):
|
276 |
+
print(captions[i])
|
277 |
+
if isinstance(image_path, str): # If image is a file path
|
278 |
+
image = Image.open(image_path).convert("RGB")
|
279 |
+
|
280 |
+
prompt = "<DETAILED_CAPTION>"
|
281 |
+
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
|
282 |
+
print(f"inputs {inputs}")
|
283 |
+
|
284 |
+
generated_ids = model.generate(
|
285 |
+
input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3
|
286 |
+
)
|
287 |
+
print(f"generated_ids {generated_ids}")
|
288 |
+
|
289 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
290 |
+
print(f"generated_text: {generated_text}")
|
291 |
+
parsed_answer = processor.post_process_generation(
|
292 |
+
generated_text, task=prompt, image_size=(image.width, image.height)
|
293 |
+
)
|
294 |
+
print(f"parsed_answer = {parsed_answer}")
|
295 |
+
caption_text = parsed_answer["<DETAILED_CAPTION>"].replace("The image shows ", "")
|
296 |
+
print(f"caption_text = {caption_text}, concept_sentence={concept_sentence}")
|
297 |
+
if concept_sentence:
|
298 |
+
caption_text = f"{concept_sentence} {caption_text}"
|
299 |
+
captions[i] = caption_text
|
300 |
+
|
301 |
+
yield captions
|
302 |
+
model.to("cpu")
|
303 |
+
del model
|
304 |
+
del processor
|
305 |
+
if torch.cuda.is_available():
|
306 |
+
torch.cuda.empty_cache()
|
307 |
+
|
308 |
+
def recursive_update(d, u):
|
309 |
+
for k, v in u.items():
|
310 |
+
if isinstance(v, dict) and v:
|
311 |
+
d[k] = recursive_update(d.get(k, {}), v)
|
312 |
+
else:
|
313 |
+
d[k] = v
|
314 |
+
return d
|
315 |
+
|
316 |
+
|
317 |
+
def resolve_path(p):
|
318 |
+
current_dir = os.path.dirname(os.path.abspath(__file__))
|
319 |
+
norm_path = os.path.normpath(os.path.join(current_dir, p))
|
320 |
+
return f"\"{norm_path}\""
|
321 |
+
def resolve_path_without_quotes(p):
|
322 |
+
current_dir = os.path.dirname(os.path.abspath(__file__))
|
323 |
+
norm_path = os.path.normpath(os.path.join(current_dir, p))
|
324 |
+
return norm_path
|
325 |
+
|
326 |
+
def gen_sh(
|
327 |
+
output_name,
|
328 |
+
resolution,
|
329 |
+
seed,
|
330 |
+
workers,
|
331 |
+
learning_rate,
|
332 |
+
network_dim,
|
333 |
+
max_train_epochs,
|
334 |
+
save_every_n_epochs,
|
335 |
+
timestep_sampling,
|
336 |
+
guidance_scale,
|
337 |
+
vram,
|
338 |
+
sample_prompts,
|
339 |
+
sample_every_n_steps,
|
340 |
+
*advanced_components
|
341 |
+
):
|
342 |
+
|
343 |
+
print(f"gen_sh: network_dim:{network_dim}, max_train_epochs={max_train_epochs}, save_every_n_epochs={save_every_n_epochs}, timestep_sampling={timestep_sampling}, guidance_scale={guidance_scale}, vram={vram}, sample_prompts={sample_prompts}, sample_every_n_steps={sample_every_n_steps}")
|
344 |
+
|
345 |
+
output_dir = resolve_path(f"outputs/{output_name}")
|
346 |
+
sample_prompts_path = resolve_path(f"outputs/{output_name}/sample_prompts.txt")
|
347 |
+
|
348 |
+
line_break = "\\"
|
349 |
+
file_type = "sh"
|
350 |
+
if sys.platform == "win32":
|
351 |
+
line_break = "^"
|
352 |
+
file_type = "bat"
|
353 |
+
|
354 |
+
############# Sample args ########################
|
355 |
+
sample = ""
|
356 |
+
if len(sample_prompts) > 0 and sample_every_n_steps > 0:
|
357 |
+
sample = f"""--sample_prompts={sample_prompts_path} --sample_every_n_steps="{sample_every_n_steps}" {line_break}"""
|
358 |
+
|
359 |
+
|
360 |
+
############# Optimizer args ########################
|
361 |
+
if vram == "16G":
|
362 |
+
# 16G VRAM
|
363 |
+
optimizer = f"""--optimizer_type adafactor {line_break}
|
364 |
+
--optimizer_args "relative_step=False" "scale_parameter=False" "warmup_init=False" {line_break}
|
365 |
+
--lr_scheduler constant_with_warmup {line_break}
|
366 |
+
--max_grad_norm 0.0 {line_break}"""
|
367 |
+
elif vram == "12G":
|
368 |
+
# 12G VRAM
|
369 |
+
optimizer = f"""--optimizer_type adafactor {line_break}
|
370 |
+
--optimizer_args "relative_step=False" "scale_parameter=False" "warmup_init=False" {line_break}
|
371 |
+
--split_mode {line_break}
|
372 |
+
--network_args "train_blocks=single" {line_break}
|
373 |
+
--lr_scheduler constant_with_warmup {line_break}
|
374 |
+
--max_grad_norm 0.0 {line_break}"""
|
375 |
+
else:
|
376 |
+
# 20G+ VRAM
|
377 |
+
optimizer = f"--optimizer_type adamw8bit {line_break}"
|
378 |
+
|
379 |
+
|
380 |
+
#######################################################
|
381 |
+
pretrained_model_path = resolve_path("models/unet/flux1-dev.sft")
|
382 |
+
clip_path = resolve_path("models/clip/clip_l.safetensors")
|
383 |
+
t5_path = resolve_path("models/clip/t5xxl_fp16.safetensors")
|
384 |
+
ae_path = resolve_path("models/vae/ae.sft")
|
385 |
+
sh = f"""accelerate launch {line_break}
|
386 |
+
--mixed_precision bf16 {line_break}
|
387 |
+
--num_cpu_threads_per_process 1 {line_break}
|
388 |
+
sd-scripts/flux_train_network.py {line_break}
|
389 |
+
--pretrained_model_name_or_path {pretrained_model_path} {line_break}
|
390 |
+
--clip_l {clip_path} {line_break}
|
391 |
+
--t5xxl {t5_path} {line_break}
|
392 |
+
--ae {ae_path} {line_break}
|
393 |
+
--cache_latents_to_disk {line_break}
|
394 |
+
--save_model_as safetensors {line_break}
|
395 |
+
--sdpa --persistent_data_loader_workers {line_break}
|
396 |
+
--max_data_loader_n_workers {workers} {line_break}
|
397 |
+
--seed {seed} {line_break}
|
398 |
+
--gradient_checkpointing {line_break}
|
399 |
+
--mixed_precision bf16 {line_break}
|
400 |
+
--save_precision bf16 {line_break}
|
401 |
+
--network_module networks.lora_flux {line_break}
|
402 |
+
--network_dim {network_dim} {line_break}
|
403 |
+
{optimizer}{sample}
|
404 |
+
--learning_rate {learning_rate} {line_break}
|
405 |
+
--cache_text_encoder_outputs {line_break}
|
406 |
+
--cache_text_encoder_outputs_to_disk {line_break}
|
407 |
+
--fp8_base {line_break}
|
408 |
+
--highvram {line_break}
|
409 |
+
--max_train_epochs {max_train_epochs} {line_break}
|
410 |
+
--save_every_n_epochs {save_every_n_epochs} {line_break}
|
411 |
+
--dataset_config {resolve_path(f"outputs/{output_name}/dataset.toml")} {line_break}
|
412 |
+
--output_dir {output_dir} {line_break}
|
413 |
+
--output_name {output_name} {line_break}
|
414 |
+
--timestep_sampling {timestep_sampling} {line_break}
|
415 |
+
--discrete_flow_shift 3.1582 {line_break}
|
416 |
+
--model_prediction_type raw {line_break}
|
417 |
+
--guidance_scale {guidance_scale} {line_break}
|
418 |
+
--loss_type l2 {line_break}"""
|
419 |
+
|
420 |
+
|
421 |
+
|
422 |
+
############# Advanced args ########################
|
423 |
+
global advanced_component_ids
|
424 |
+
global original_advanced_component_values
|
425 |
+
|
426 |
+
# check dirty
|
427 |
+
print(f"original_advanced_component_values = {original_advanced_component_values}")
|
428 |
+
advanced_flags = []
|
429 |
+
for i, current_value in enumerate(advanced_components):
|
430 |
+
# print(f"compare {advanced_component_ids[i]}: old={original_advanced_component_values[i]}, new={current_value}")
|
431 |
+
if original_advanced_component_values[i] != current_value:
|
432 |
+
# dirty
|
433 |
+
if current_value == True:
|
434 |
+
# Boolean
|
435 |
+
advanced_flags.append(advanced_component_ids[i])
|
436 |
+
else:
|
437 |
+
# string
|
438 |
+
advanced_flags.append(f"{advanced_component_ids[i]} {current_value}")
|
439 |
+
|
440 |
+
if len(advanced_flags) > 0:
|
441 |
+
advanced_flags_str = f" {line_break}\n ".join(advanced_flags)
|
442 |
+
sh = sh + "\n " + advanced_flags_str
|
443 |
+
|
444 |
+
return sh
|
445 |
+
|
446 |
+
def gen_toml(
|
447 |
+
dataset_folder,
|
448 |
+
resolution,
|
449 |
+
class_tokens,
|
450 |
+
num_repeats
|
451 |
+
):
|
452 |
+
toml = f"""[general]
|
453 |
+
shuffle_caption = false
|
454 |
+
caption_extension = '.txt'
|
455 |
+
keep_tokens = 1
|
456 |
+
|
457 |
+
[[datasets]]
|
458 |
+
resolution = {resolution}
|
459 |
+
batch_size = 1
|
460 |
+
keep_tokens = 1
|
461 |
+
|
462 |
+
[[datasets.subsets]]
|
463 |
+
image_dir = '{resolve_path_without_quotes(dataset_folder)}'
|
464 |
+
class_tokens = '{class_tokens}'
|
465 |
+
num_repeats = {num_repeats}"""
|
466 |
+
return toml
|
467 |
+
|
468 |
+
def update_total_steps(max_train_epochs, num_repeats, images):
|
469 |
+
try:
|
470 |
+
num_images = len(images)
|
471 |
+
total_steps = max_train_epochs * num_images * num_repeats
|
472 |
+
print(f"max_train_epochs={max_train_epochs} num_images={num_images}, num_repeats={num_repeats}, total_steps={total_steps}")
|
473 |
+
return gr.update(value = total_steps)
|
474 |
+
except:
|
475 |
+
print("")
|
476 |
+
|
477 |
+
def set_repo(lora_rows):
|
478 |
+
selected_name = os.path.basename(lora_rows)
|
479 |
+
return gr.update(value=selected_name)
|
480 |
+
|
481 |
+
def get_loras():
|
482 |
+
try:
|
483 |
+
outputs_path = resolve_path_without_quotes(f"outputs")
|
484 |
+
files = os.listdir(outputs_path)
|
485 |
+
folders = [os.path.join(outputs_path, item) for item in files if os.path.isdir(os.path.join(outputs_path, item)) and item != "sample"]
|
486 |
+
folders.sort(key=lambda file: os.path.getctime(file), reverse=True)
|
487 |
+
return folders
|
488 |
+
except Exception as e:
|
489 |
+
return []
|
490 |
+
|
491 |
+
def get_samples(lora_name):
|
492 |
+
output_name = slugify(lora_name)
|
493 |
+
try:
|
494 |
+
samples_path = resolve_path_without_quotes(f"outputs/{output_name}/sample")
|
495 |
+
files = [os.path.join(samples_path, file) for file in os.listdir(samples_path)]
|
496 |
+
files.sort(key=lambda file: os.path.getctime(file), reverse=True)
|
497 |
+
return files
|
498 |
+
except:
|
499 |
+
return []
|
500 |
+
|
501 |
+
def start_training(
|
502 |
+
lora_name,
|
503 |
+
train_script,
|
504 |
+
train_config,
|
505 |
+
sample_prompts,
|
506 |
+
):
|
507 |
+
# write custom script and toml
|
508 |
+
os.makedirs("models", exist_ok=True)
|
509 |
+
os.makedirs("outputs", exist_ok=True)
|
510 |
+
output_name = slugify(lora_name)
|
511 |
+
output_dir = resolve_path_without_quotes(f"outputs/{output_name}")
|
512 |
+
os.makedirs(output_dir, exist_ok=True)
|
513 |
+
|
514 |
+
|
515 |
+
file_type = "sh"
|
516 |
+
if sys.platform == "win32":
|
517 |
+
file_type = "bat"
|
518 |
+
|
519 |
+
sh_filename = f"train.{file_type}"
|
520 |
+
sh_filepath = resolve_path_without_quotes(f"outputs/{output_name}/{sh_filename}")
|
521 |
+
with open(sh_filepath, 'w', encoding="utf-8") as file:
|
522 |
+
file.write(train_script)
|
523 |
+
gr.Info(f"Generated train script at {sh_filename}")
|
524 |
+
|
525 |
+
|
526 |
+
dataset_path = resolve_path_without_quotes(f"outputs/{output_name}/dataset.toml")
|
527 |
+
with open(dataset_path, 'w', encoding="utf-8") as file:
|
528 |
+
file.write(train_config)
|
529 |
+
gr.Info(f"Generated dataset.toml")
|
530 |
+
|
531 |
+
sample_prompts_path = resolve_path_without_quotes(f"outputs/{output_name}/sample_prompts.txt")
|
532 |
+
with open(sample_prompts_path, 'w', encoding='utf-8') as file:
|
533 |
+
file.write(sample_prompts)
|
534 |
+
gr.Info(f"Generated sample_prompts.txt")
|
535 |
+
|
536 |
+
# Train
|
537 |
+
if sys.platform == "win32":
|
538 |
+
command = sh_filepath
|
539 |
+
else:
|
540 |
+
command = f"bash \"{sh_filepath}\""
|
541 |
+
|
542 |
+
# Use Popen to run the command and capture output in real-time
|
543 |
+
env = os.environ.copy()
|
544 |
+
env['PYTHONIOENCODING'] = 'utf-8'
|
545 |
+
runner = LogsViewRunner()
|
546 |
+
cwd = os.path.dirname(os.path.abspath(__file__))
|
547 |
+
gr.Info(f"Started training")
|
548 |
+
yield from runner.run_command([command], cwd=cwd)
|
549 |
+
yield runner.log(f"Runner: {runner}")
|
550 |
+
gr.Info(f"Training Complete. Check the outputs folder for the LoRA files.", duration=None)
|
551 |
+
|
552 |
+
|
553 |
+
def update(
|
554 |
+
lora_name,
|
555 |
+
resolution,
|
556 |
+
seed,
|
557 |
+
workers,
|
558 |
+
class_tokens,
|
559 |
+
learning_rate,
|
560 |
+
network_dim,
|
561 |
+
max_train_epochs,
|
562 |
+
save_every_n_epochs,
|
563 |
+
timestep_sampling,
|
564 |
+
guidance_scale,
|
565 |
+
vram,
|
566 |
+
num_repeats,
|
567 |
+
sample_prompts,
|
568 |
+
sample_every_n_steps,
|
569 |
+
*advanced_components,
|
570 |
+
):
|
571 |
+
output_name = slugify(lora_name)
|
572 |
+
dataset_folder = str(f"datasets/{output_name}")
|
573 |
+
sh = gen_sh(
|
574 |
+
output_name,
|
575 |
+
resolution,
|
576 |
+
seed,
|
577 |
+
workers,
|
578 |
+
learning_rate,
|
579 |
+
network_dim,
|
580 |
+
max_train_epochs,
|
581 |
+
save_every_n_epochs,
|
582 |
+
timestep_sampling,
|
583 |
+
guidance_scale,
|
584 |
+
vram,
|
585 |
+
sample_prompts,
|
586 |
+
sample_every_n_steps,
|
587 |
+
*advanced_components,
|
588 |
+
)
|
589 |
+
toml = gen_toml(
|
590 |
+
dataset_folder,
|
591 |
+
resolution,
|
592 |
+
class_tokens,
|
593 |
+
num_repeats
|
594 |
+
)
|
595 |
+
return gr.update(value=sh), gr.update(value=toml), dataset_folder
|
596 |
+
|
597 |
+
"""
|
598 |
+
demo.load(fn=loaded, js=js, outputs=[hf_token, hf_login, hf_logout, hf_account])
|
599 |
+
"""
|
600 |
+
def loaded():
|
601 |
+
global current_account
|
602 |
+
current_account = account_hf()
|
603 |
+
print(f"current_account={current_account}")
|
604 |
+
if current_account != None:
|
605 |
+
return gr.update(value=current_account["token"]), gr.update(visible=False), gr.update(visible=True), gr.update(value=current_account["account"], visible=True)
|
606 |
+
else:
|
607 |
+
return gr.update(value=""), gr.update(visible=True), gr.update(visible=False), gr.update(value="", visible=False)
|
608 |
+
|
609 |
+
def update_sample(concept_sentence):
|
610 |
+
return gr.update(value=concept_sentence)
|
611 |
+
|
612 |
+
def refresh_publish_tab():
|
613 |
+
loras = get_loras()
|
614 |
+
return gr.Dropdown(label="Trained LoRAs", choices=loras)
|
615 |
+
|
616 |
+
def init_advanced():
|
617 |
+
# if basic_args
|
618 |
+
basic_args = {
|
619 |
+
'pretrained_model_name_or_path',
|
620 |
+
'clip_l',
|
621 |
+
't5xxl',
|
622 |
+
'ae',
|
623 |
+
'cache_latents_to_disk',
|
624 |
+
'save_model_as',
|
625 |
+
'sdpa',
|
626 |
+
'persistent_data_loader_workers',
|
627 |
+
'max_data_loader_n_workers',
|
628 |
+
'seed',
|
629 |
+
'gradient_checkpointing',
|
630 |
+
'mixed_precision',
|
631 |
+
'save_precision',
|
632 |
+
'network_module',
|
633 |
+
'network_dim',
|
634 |
+
'learning_rate',
|
635 |
+
'cache_text_encoder_outputs',
|
636 |
+
'cache_text_encoder_outputs_to_disk',
|
637 |
+
'fp8_base',
|
638 |
+
'highvram',
|
639 |
+
'max_train_epochs',
|
640 |
+
'save_every_n_epochs',
|
641 |
+
'dataset_config',
|
642 |
+
'output_dir',
|
643 |
+
'output_name',
|
644 |
+
'timestep_sampling',
|
645 |
+
'discrete_flow_shift',
|
646 |
+
'model_prediction_type',
|
647 |
+
'guidance_scale',
|
648 |
+
'loss_type',
|
649 |
+
'optimizer_type',
|
650 |
+
'optimizer_args',
|
651 |
+
'lr_scheduler',
|
652 |
+
'sample_prompts',
|
653 |
+
'sample_every_n_steps',
|
654 |
+
'max_grad_norm',
|
655 |
+
'split_mode',
|
656 |
+
'network_args'
|
657 |
+
}
|
658 |
+
|
659 |
+
# generate a UI config
|
660 |
+
# if not in basic_args, create a simple form
|
661 |
+
parser = train_network.setup_parser()
|
662 |
+
flux_train_utils.add_flux_train_arguments(parser)
|
663 |
+
args_info = {}
|
664 |
+
for action in parser._actions:
|
665 |
+
if action.dest != 'help': # Skip the default help argument
|
666 |
+
# if the dest is included in basic_args
|
667 |
+
args_info[action.dest] = {
|
668 |
+
"action": action.option_strings, # Option strings like '--use_8bit_adam'
|
669 |
+
"type": action.type, # Type of the argument
|
670 |
+
"help": action.help, # Help message
|
671 |
+
"default": action.default, # Default value, if any
|
672 |
+
"required": action.required # Whether the argument is required
|
673 |
+
}
|
674 |
+
temp = []
|
675 |
+
for key in args_info:
|
676 |
+
temp.append({ 'key': key, 'action': args_info[key] })
|
677 |
+
temp.sort(key=lambda x: x['key'])
|
678 |
+
advanced_component_ids = []
|
679 |
+
advanced_components = []
|
680 |
+
for item in temp:
|
681 |
+
key = item['key']
|
682 |
+
action = item['action']
|
683 |
+
if key in basic_args:
|
684 |
+
print("")
|
685 |
+
else:
|
686 |
+
action_type = str(action['type'])
|
687 |
+
component = None
|
688 |
+
with gr.Column(min_width=300):
|
689 |
+
if action_type == "None":
|
690 |
+
# radio
|
691 |
+
component = gr.Checkbox()
|
692 |
+
# elif action_type == "<class 'str'>":
|
693 |
+
# component = gr.Textbox()
|
694 |
+
# elif action_type == "<class 'int'>":
|
695 |
+
# component = gr.Number(precision=0)
|
696 |
+
# elif action_type == "<class 'float'>":
|
697 |
+
# component = gr.Number()
|
698 |
+
# elif "int_or_float" in action_type:
|
699 |
+
# component = gr.Number()
|
700 |
+
else:
|
701 |
+
component = gr.Textbox(value="")
|
702 |
+
if component != None:
|
703 |
+
component.interactive = True
|
704 |
+
component.elem_id = action['action'][0]
|
705 |
+
component.label = component.elem_id
|
706 |
+
component.elem_classes = ["advanced"]
|
707 |
+
if action['help'] != None:
|
708 |
+
component.info = action['help']
|
709 |
+
advanced_components.append(component)
|
710 |
+
advanced_component_ids.append(component.elem_id)
|
711 |
+
return advanced_components, advanced_component_ids
|
712 |
+
|
713 |
+
|
714 |
+
theme = gr.themes.Monochrome(
|
715 |
+
text_size=gr.themes.Size(lg="18px", md="15px", sm="13px", xl="22px", xs="12px", xxl="24px", xxs="9px"),
|
716 |
+
font=[gr.themes.GoogleFont("Source Sans Pro"), "ui-sans-serif", "system-ui", "sans-serif"],
|
717 |
+
)
|
718 |
+
css = """
|
719 |
+
@keyframes rotate {
|
720 |
+
0% {
|
721 |
+
transform: rotate(0deg);
|
722 |
+
}
|
723 |
+
100% {
|
724 |
+
transform: rotate(360deg);
|
725 |
+
}
|
726 |
+
}
|
727 |
+
#advanced_options .advanced:nth-child(even) { background: rgba(0,0,100,0.04) !important; }
|
728 |
+
h1{font-family: georgia; font-style: italic; font-weight: bold; font-size: 30px; letter-spacing: -1px;}
|
729 |
+
h3{margin-top: 0}
|
730 |
+
.tabitem{border: 0px}
|
731 |
+
.group_padding{}
|
732 |
+
nav{position: fixed; top: 0; left: 0; right: 0; z-index: 1000; text-align: center; padding: 10px; box-sizing: border-box; display: flex; align-items: center; backdrop-filter: blur(10px); }
|
733 |
+
nav button { background: none; color: firebrick; font-weight: bold; border: 2px solid firebrick; padding: 5px 10px; border-radius: 5px; font-size: 14px; }
|
734 |
+
nav img { height: 40px; width: 40px; border-radius: 40px; }
|
735 |
+
nav img.rotate { animation: rotate 2s linear infinite; }
|
736 |
+
.flexible { flex-grow: 1; }
|
737 |
+
.tast-details { margin: 10px 0 !important; }
|
738 |
+
.toast-wrap { bottom: var(--size-4) !important; top: auto !important; border: none !important; backdrop-filter: blur(10px); }
|
739 |
+
.toast-title, .toast-text, .toast-icon, .toast-close { color: black !important; font-size: 14px; }
|
740 |
+
.toast-body { border: none !important; }
|
741 |
+
#terminal { box-shadow: none !important; margin-bottom: 25px; background: rgba(0,0,0,0.03); }
|
742 |
+
#terminal .generating { border: none !important; }
|
743 |
+
#terminal label { position: absolute !important; }
|
744 |
+
.tabs { margin-top: 50px; }
|
745 |
+
.hidden { display: none !important; }
|
746 |
+
.codemirror-wrapper .cm-line { font-size: 12px !important; }
|
747 |
+
label { font-weight: bold !important; }
|
748 |
+
"""
|
749 |
+
|
750 |
+
js = """
|
751 |
+
function() {
|
752 |
+
let autoscroll = document.querySelector("#autoscroll")
|
753 |
+
if (window.iidxx) {
|
754 |
+
window.clearInterval(window.iidxx);
|
755 |
+
}
|
756 |
+
window.iidxx = window.setInterval(function() {
|
757 |
+
let text=document.querySelector(".codemirror-wrapper .cm-line").innerText.trim()
|
758 |
+
let img = document.querySelector("#logo")
|
759 |
+
if (text.length > 0) {
|
760 |
+
autoscroll.classList.remove("hidden")
|
761 |
+
if (autoscroll.classList.contains("on")) {
|
762 |
+
autoscroll.textContent = "Autoscroll ON"
|
763 |
+
window.scrollTo(0, document.body.scrollHeight, { behavior: "smooth" });
|
764 |
+
img.classList.add("rotate")
|
765 |
+
} else {
|
766 |
+
autoscroll.textContent = "Autoscroll OFF"
|
767 |
+
img.classList.remove("rotate")
|
768 |
+
}
|
769 |
+
}
|
770 |
+
}, 500);
|
771 |
+
console.log("autoscroll", autoscroll)
|
772 |
+
autoscroll.addEventListener("click", (e) => {
|
773 |
+
autoscroll.classList.toggle("on")
|
774 |
+
})
|
775 |
+
function debounce(fn, delay) {
|
776 |
+
let timeoutId;
|
777 |
+
return function(...args) {
|
778 |
+
clearTimeout(timeoutId);
|
779 |
+
timeoutId = setTimeout(() => fn(...args), delay);
|
780 |
+
};
|
781 |
+
}
|
782 |
+
|
783 |
+
function handleClick() {
|
784 |
+
console.log("refresh")
|
785 |
+
document.querySelector("#refresh").click();
|
786 |
+
}
|
787 |
+
const debouncedClick = debounce(handleClick, 1000);
|
788 |
+
document.addEventListener("input", debouncedClick);
|
789 |
+
|
790 |
+
}
|
791 |
+
"""
|
792 |
+
|
793 |
+
current_account = account_hf()
|
794 |
+
print(f"current_account={current_account}")
|
795 |
+
|
796 |
+
with gr.Blocks(elem_id="app", theme=theme, css=css, fill_width=True) as demo:
|
797 |
+
with gr.Tabs() as tabs:
|
798 |
+
with gr.TabItem("Gym"):
|
799 |
+
output_components = []
|
800 |
+
with gr.Row():
|
801 |
+
gr.HTML("""<nav>
|
802 |
+
<img id='logo' src='/file=icon.png' width='80' height='80'>
|
803 |
+
<div class='flexible'></div>
|
804 |
+
<button id='autoscroll' class='on hidden'></button>
|
805 |
+
</nav>
|
806 |
+
""")
|
807 |
+
with gr.Row(elem_id='container'):
|
808 |
+
with gr.Column():
|
809 |
+
gr.Markdown(
|
810 |
+
"""# Step 1. LoRA Info
|
811 |
+
<p style="margin-top:0">Configure your LoRA train settings.</p>
|
812 |
+
""", elem_classes="group_padding")
|
813 |
+
lora_name = gr.Textbox(
|
814 |
+
label="The name of your LoRA",
|
815 |
+
info="This has to be a unique name",
|
816 |
+
placeholder="e.g.: Persian Miniature Painting style, Cat Toy",
|
817 |
+
)
|
818 |
+
concept_sentence = gr.Textbox(
|
819 |
+
elem_id="--concept_sentence",
|
820 |
+
label="Trigger word/sentence",
|
821 |
+
info="Trigger word or sentence to be used",
|
822 |
+
placeholder="uncommon word like p3rs0n or trtcrd, or sentence like 'in the style of CNSTLL'",
|
823 |
+
interactive=True,
|
824 |
+
)
|
825 |
+
vram = gr.Radio(["20G", "16G", "12G" ], value="20G", label="VRAM", interactive=True)
|
826 |
+
num_repeats = gr.Number(value=10, precision=0, label="Repeat trains per image", interactive=True)
|
827 |
+
max_train_epochs = gr.Number(label="Max Train Epochs", value=16, interactive=True)
|
828 |
+
total_steps = gr.Number(0, interactive=False, label="Expected training steps")
|
829 |
+
sample_prompts = gr.Textbox("", lines=5, label="Sample Image Prompts (Separate with new lines)", interactive=True)
|
830 |
+
sample_every_n_steps = gr.Number(0, precision=0, label="Sample Image Every N Steps", interactive=True)
|
831 |
+
resolution = gr.Number(value=512, precision=0, label="Resize dataset images")
|
832 |
+
with gr.Column():
|
833 |
+
gr.Markdown(
|
834 |
+
"""# Step 2. Dataset
|
835 |
+
<p style="margin-top:0">Make sure the captions include the trigger word.</p>
|
836 |
+
""", elem_classes="group_padding")
|
837 |
+
with gr.Group():
|
838 |
+
images = gr.File(
|
839 |
+
file_types=["image", ".txt"],
|
840 |
+
label="Upload your images",
|
841 |
+
file_count="multiple",
|
842 |
+
interactive=True,
|
843 |
+
visible=True,
|
844 |
+
scale=1,
|
845 |
+
)
|
846 |
+
with gr.Group(visible=False) as captioning_area:
|
847 |
+
do_captioning = gr.Button("Add AI captions with Florence-2")
|
848 |
+
output_components.append(captioning_area)
|
849 |
+
#output_components = [captioning_area]
|
850 |
+
caption_list = []
|
851 |
+
for i in range(1, MAX_IMAGES + 1):
|
852 |
+
locals()[f"captioning_row_{i}"] = gr.Row(visible=False)
|
853 |
+
with locals()[f"captioning_row_{i}"]:
|
854 |
+
locals()[f"image_{i}"] = gr.Image(
|
855 |
+
type="filepath",
|
856 |
+
width=111,
|
857 |
+
height=111,
|
858 |
+
min_width=111,
|
859 |
+
interactive=False,
|
860 |
+
scale=2,
|
861 |
+
show_label=False,
|
862 |
+
show_share_button=False,
|
863 |
+
show_download_button=False,
|
864 |
+
)
|
865 |
+
locals()[f"caption_{i}"] = gr.Textbox(
|
866 |
+
label=f"Caption {i}", scale=15, interactive=True
|
867 |
+
)
|
868 |
+
|
869 |
+
output_components.append(locals()[f"captioning_row_{i}"])
|
870 |
+
output_components.append(locals()[f"image_{i}"])
|
871 |
+
output_components.append(locals()[f"caption_{i}"])
|
872 |
+
caption_list.append(locals()[f"caption_{i}"])
|
873 |
+
with gr.Column():
|
874 |
+
gr.Markdown(
|
875 |
+
"""# Step 3. Train
|
876 |
+
<p style="margin-top:0">Press start to start training.</p>
|
877 |
+
""", elem_classes="group_padding")
|
878 |
+
refresh = gr.Button("Refresh", elem_id="refresh", visible=False)
|
879 |
+
start = gr.Button("Start training", visible=False)
|
880 |
+
output_components.append(start)
|
881 |
+
train_script = gr.Textbox(label="Train script", max_lines=100, interactive=True)
|
882 |
+
train_config = gr.Textbox(label="Train config", max_lines=100, interactive=True)
|
883 |
+
with gr.Accordion("Advanced options", elem_id='advanced_options', open=False):
|
884 |
+
with gr.Row():
|
885 |
+
with gr.Column(min_width=300):
|
886 |
+
seed = gr.Number(label="--seed", info="Seed", value=42, interactive=True)
|
887 |
+
with gr.Column(min_width=300):
|
888 |
+
workers = gr.Number(label="--max_data_loader_n_workers", info="Number of Workers", value=2, interactive=True)
|
889 |
+
with gr.Column(min_width=300):
|
890 |
+
learning_rate = gr.Textbox(label="--learning_rate", info="Learning Rate", value="8e-4", interactive=True)
|
891 |
+
with gr.Column(min_width=300):
|
892 |
+
save_every_n_epochs = gr.Number(label="--save_every_n_epochs", info="Save every N epochs", value=4, interactive=True)
|
893 |
+
with gr.Column(min_width=300):
|
894 |
+
guidance_scale = gr.Number(label="--guidance_scale", info="Guidance Scale", value=1.0, interactive=True)
|
895 |
+
with gr.Column(min_width=300):
|
896 |
+
timestep_sampling = gr.Textbox(label="--timestep_sampling", info="Timestep Sampling", value="shift", interactive=True)
|
897 |
+
with gr.Column(min_width=300):
|
898 |
+
network_dim = gr.Number(label="--network_dim", info="LoRA Rank", value=4, minimum=4, maximum=128, step=4, interactive=True)
|
899 |
+
advanced_components, advanced_component_ids = init_advanced()
|
900 |
+
with gr.Row():
|
901 |
+
terminal = LogsView(label="Train log", elem_id="terminal")
|
902 |
+
with gr.Row():
|
903 |
+
gallery = gr.Gallery(get_samples, inputs=[lora_name], label="Samples", every=10, columns=6)
|
904 |
+
|
905 |
+
with gr.TabItem("Publish") as publish_tab:
|
906 |
+
hf_token = gr.Textbox(label="Huggingface Token")
|
907 |
+
hf_login = gr.Button("Login")
|
908 |
+
hf_logout = gr.Button("Logout")
|
909 |
+
with gr.Row() as row:
|
910 |
+
gr.Markdown("**LoRA**")
|
911 |
+
gr.Markdown("**Upload**")
|
912 |
+
loras = get_loras()
|
913 |
+
with gr.Row():
|
914 |
+
lora_rows = refresh_publish_tab()
|
915 |
+
with gr.Column():
|
916 |
+
with gr.Row():
|
917 |
+
repo_owner = gr.Textbox(label="Account", interactive=False)
|
918 |
+
repo_name = gr.Textbox(label="Repository Name")
|
919 |
+
repo_visibility = gr.Textbox(label="Repository Visibility ('public' or 'private')", value="public")
|
920 |
+
upload_button = gr.Button("Upload to HuggingFace")
|
921 |
+
upload_button.click(
|
922 |
+
fn=upload_hf,
|
923 |
+
inputs=[
|
924 |
+
lora_rows,
|
925 |
+
repo_owner,
|
926 |
+
repo_name,
|
927 |
+
repo_visibility,
|
928 |
+
hf_token,
|
929 |
+
]
|
930 |
+
)
|
931 |
+
hf_login.click(fn=login_hf, inputs=[hf_token], outputs=[hf_token, hf_login, hf_logout, repo_owner])
|
932 |
+
hf_logout.click(fn=logout_hf, outputs=[hf_token, hf_login, hf_logout, repo_owner])
|
933 |
+
|
934 |
+
|
935 |
+
publish_tab.select(refresh_publish_tab, outputs=lora_rows)
|
936 |
+
lora_rows.select(fn=set_repo, inputs=[lora_rows], outputs=[repo_name])
|
937 |
+
|
938 |
+
dataset_folder = gr.State()
|
939 |
+
|
940 |
+
listeners = [
|
941 |
+
lora_name,
|
942 |
+
resolution,
|
943 |
+
seed,
|
944 |
+
workers,
|
945 |
+
concept_sentence,
|
946 |
+
learning_rate,
|
947 |
+
network_dim,
|
948 |
+
max_train_epochs,
|
949 |
+
save_every_n_epochs,
|
950 |
+
timestep_sampling,
|
951 |
+
guidance_scale,
|
952 |
+
vram,
|
953 |
+
num_repeats,
|
954 |
+
sample_prompts,
|
955 |
+
sample_every_n_steps,
|
956 |
+
*advanced_components
|
957 |
+
]
|
958 |
+
advanced_component_ids = [x.elem_id for x in advanced_components]
|
959 |
+
original_advanced_component_values = [comp.value for comp in advanced_components]
|
960 |
+
images.upload(
|
961 |
+
load_captioning,
|
962 |
+
inputs=[images, concept_sentence],
|
963 |
+
outputs=output_components
|
964 |
+
)
|
965 |
+
images.delete(
|
966 |
+
load_captioning,
|
967 |
+
inputs=[images, concept_sentence],
|
968 |
+
outputs=output_components
|
969 |
+
)
|
970 |
+
images.clear(
|
971 |
+
hide_captioning,
|
972 |
+
outputs=[captioning_area, start]
|
973 |
+
)
|
974 |
+
max_train_epochs.change(
|
975 |
+
fn=update_total_steps,
|
976 |
+
inputs=[max_train_epochs, num_repeats, images],
|
977 |
+
outputs=[total_steps]
|
978 |
+
)
|
979 |
+
num_repeats.change(
|
980 |
+
fn=update_total_steps,
|
981 |
+
inputs=[max_train_epochs, num_repeats, images],
|
982 |
+
outputs=[total_steps]
|
983 |
+
)
|
984 |
+
images.upload(
|
985 |
+
fn=update_total_steps,
|
986 |
+
inputs=[max_train_epochs, num_repeats, images],
|
987 |
+
outputs=[total_steps]
|
988 |
+
)
|
989 |
+
images.delete(
|
990 |
+
fn=update_total_steps,
|
991 |
+
inputs=[max_train_epochs, num_repeats, images],
|
992 |
+
outputs=[total_steps]
|
993 |
+
)
|
994 |
+
images.clear(
|
995 |
+
fn=update_total_steps,
|
996 |
+
inputs=[max_train_epochs, num_repeats, images],
|
997 |
+
outputs=[total_steps]
|
998 |
+
)
|
999 |
+
concept_sentence.change(fn=update_sample, inputs=[concept_sentence], outputs=sample_prompts)
|
1000 |
+
start.click(fn=create_dataset, inputs=[dataset_folder, resolution, images] + caption_list, outputs=dataset_folder).then(
|
1001 |
+
fn=start_training,
|
1002 |
+
inputs=[
|
1003 |
+
lora_name,
|
1004 |
+
train_script,
|
1005 |
+
train_config,
|
1006 |
+
sample_prompts,
|
1007 |
+
],
|
1008 |
+
outputs=terminal,
|
1009 |
+
)
|
1010 |
+
do_captioning.click(fn=run_captioning, inputs=[images, concept_sentence] + caption_list, outputs=caption_list)
|
1011 |
+
demo.load(fn=loaded, js=js, outputs=[hf_token, hf_login, hf_logout, repo_owner])
|
1012 |
+
refresh.click(update, inputs=listeners, outputs=[train_script, train_config, dataset_folder])
|
1013 |
+
if __name__ == "__main__":
|
1014 |
+
cwd = os.path.dirname(os.path.abspath(__file__))
|
1015 |
+
demo.launch(debug=True, show_error=True, allowed_paths=[cwd])
|
flags.png
ADDED
Git LFS Details
|
flow.gif
ADDED
Git LFS Details
|
icon.png
ADDED
Git LFS Details
|
install.js
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
module.exports = {
|
2 |
+
run: [
|
3 |
+
{
|
4 |
+
method: "shell.run",
|
5 |
+
params: {
|
6 |
+
venv: "env",
|
7 |
+
message: [
|
8 |
+
"git config --global --add safe.directory '*'",
|
9 |
+
"git clone -b sd3 https://github.com/kohya-ss/sd-scripts"
|
10 |
+
]
|
11 |
+
}
|
12 |
+
},
|
13 |
+
{
|
14 |
+
method: "shell.run",
|
15 |
+
params: {
|
16 |
+
path: "sd-scripts",
|
17 |
+
venv: "../env",
|
18 |
+
message: [
|
19 |
+
"pip install -r requirements.txt",
|
20 |
+
]
|
21 |
+
}
|
22 |
+
},
|
23 |
+
{
|
24 |
+
method: "shell.run",
|
25 |
+
params: {
|
26 |
+
venv: "env",
|
27 |
+
message: [
|
28 |
+
"pip uninstall -y diffusers[torch] torch torchaudio torchvision",
|
29 |
+
"pip install -r requirements.txt",
|
30 |
+
]
|
31 |
+
}
|
32 |
+
},
|
33 |
+
{
|
34 |
+
method: "script.start",
|
35 |
+
params: {
|
36 |
+
uri: "torch.js",
|
37 |
+
params: {
|
38 |
+
venv: "env",
|
39 |
+
// xformers: true // uncomment this line if your project requires xformers
|
40 |
+
}
|
41 |
+
}
|
42 |
+
},
|
43 |
+
{
|
44 |
+
method: "fs.link",
|
45 |
+
params: {
|
46 |
+
drive: {
|
47 |
+
vae: "models/vae",
|
48 |
+
clip: "models/clip",
|
49 |
+
unet: "models/unet",
|
50 |
+
loras: "outputs",
|
51 |
+
},
|
52 |
+
peers: [
|
53 |
+
"https://github.com/pinokiofactory/stable-diffusion-webui-forge.git",
|
54 |
+
"https://github.com/pinokiofactory/comfy.git",
|
55 |
+
"https://github.com/cocktailpeanutlabs/comfyui.git",
|
56 |
+
"https://github.com/cocktailpeanutlabs/fooocus.git",
|
57 |
+
"https://github.com/cocktailpeanutlabs/automatic1111.git",
|
58 |
+
]
|
59 |
+
}
|
60 |
+
},
|
61 |
+
{
|
62 |
+
method: "fs.download",
|
63 |
+
params: {
|
64 |
+
uri: [
|
65 |
+
"https://huggingface.co/comfyanonymous/flux_text_encoders/resolve/main/clip_l.safetensors?download=true",
|
66 |
+
"https://huggingface.co/comfyanonymous/flux_text_encoders/resolve/main/t5xxl_fp16.safetensors?download=true",
|
67 |
+
],
|
68 |
+
dir: "models/clip"
|
69 |
+
}
|
70 |
+
},
|
71 |
+
{
|
72 |
+
method: "fs.download",
|
73 |
+
params: {
|
74 |
+
uri: [
|
75 |
+
"https://huggingface.co/cocktailpeanut/xulf-dev/resolve/main/ae.sft?download=true",
|
76 |
+
],
|
77 |
+
dir: "models/vae"
|
78 |
+
}
|
79 |
+
},
|
80 |
+
{
|
81 |
+
method: "fs.download",
|
82 |
+
params: {
|
83 |
+
uri: [
|
84 |
+
"https://huggingface.co/cocktailpeanut/xulf-dev/resolve/main/flux1-dev.sft?download=true",
|
85 |
+
],
|
86 |
+
dir: "models/unet"
|
87 |
+
}
|
88 |
+
},
|
89 |
+
{
|
90 |
+
method: "fs.link",
|
91 |
+
params: {
|
92 |
+
venv: "env"
|
93 |
+
}
|
94 |
+
}
|
95 |
+
]
|
96 |
+
}
|
models/.gitkeep
ADDED
File without changes
|
models/clip/.gitkeep
ADDED
File without changes
|
models/unet/.gitkeep
ADDED
File without changes
|
models/vae/.gitkeep
ADDED
File without changes
|
outputs/.gitkeep
ADDED
File without changes
|
pinokio.js
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
const path = require('path')
|
2 |
+
module.exports = {
|
3 |
+
version: "2.1",
|
4 |
+
title: "fluxgym",
|
5 |
+
description: "[NVIDIA Only] Dead simple web UI for training FLUX LoRA with LOW VRAM support (From 12GB)",
|
6 |
+
icon: "icon.png",
|
7 |
+
menu: async (kernel, info) => {
|
8 |
+
let installed = info.exists("env")
|
9 |
+
let running = {
|
10 |
+
install: info.running("install.js"),
|
11 |
+
start: info.running("start.js"),
|
12 |
+
update: info.running("update.js"),
|
13 |
+
reset: info.running("reset.js")
|
14 |
+
}
|
15 |
+
if (running.install) {
|
16 |
+
return [{
|
17 |
+
default: true,
|
18 |
+
icon: "fa-solid fa-plug",
|
19 |
+
text: "Installing",
|
20 |
+
href: "install.js",
|
21 |
+
}]
|
22 |
+
} else if (installed) {
|
23 |
+
if (running.start) {
|
24 |
+
let local = info.local("start.js")
|
25 |
+
if (local && local.url) {
|
26 |
+
return [{
|
27 |
+
default: true,
|
28 |
+
icon: "fa-solid fa-rocket",
|
29 |
+
text: "Open Web UI",
|
30 |
+
href: local.url,
|
31 |
+
}, {
|
32 |
+
icon: 'fa-solid fa-terminal',
|
33 |
+
text: "Terminal",
|
34 |
+
href: "start.js",
|
35 |
+
}, {
|
36 |
+
icon: "fa-solid fa-flask",
|
37 |
+
text: "Outputs",
|
38 |
+
href: "outputs?fs"
|
39 |
+
}]
|
40 |
+
} else {
|
41 |
+
return [{
|
42 |
+
default: true,
|
43 |
+
icon: 'fa-solid fa-terminal',
|
44 |
+
text: "Terminal",
|
45 |
+
href: "start.js",
|
46 |
+
}]
|
47 |
+
}
|
48 |
+
} else if (running.update) {
|
49 |
+
return [{
|
50 |
+
default: true,
|
51 |
+
icon: 'fa-solid fa-terminal',
|
52 |
+
text: "Updating",
|
53 |
+
href: "update.js",
|
54 |
+
}]
|
55 |
+
} else if (running.reset) {
|
56 |
+
return [{
|
57 |
+
default: true,
|
58 |
+
icon: 'fa-solid fa-terminal',
|
59 |
+
text: "Resetting",
|
60 |
+
href: "reset.js",
|
61 |
+
}]
|
62 |
+
} else {
|
63 |
+
return [{
|
64 |
+
default: true,
|
65 |
+
icon: "fa-solid fa-power-off",
|
66 |
+
text: "Start",
|
67 |
+
href: "start.js",
|
68 |
+
}, {
|
69 |
+
icon: "fa-solid fa-flask",
|
70 |
+
text: "Outputs",
|
71 |
+
href: "sd-scripts/fluxgym/outputs?fs"
|
72 |
+
}, {
|
73 |
+
icon: "fa-solid fa-plug",
|
74 |
+
text: "Update",
|
75 |
+
href: "update.js",
|
76 |
+
}, {
|
77 |
+
icon: "fa-solid fa-plug",
|
78 |
+
text: "Install",
|
79 |
+
href: "install.js",
|
80 |
+
}, {
|
81 |
+
icon: "fa-regular fa-circle-xmark",
|
82 |
+
text: "Reset",
|
83 |
+
href: "reset.js",
|
84 |
+
}]
|
85 |
+
}
|
86 |
+
} else {
|
87 |
+
return [{
|
88 |
+
default: true,
|
89 |
+
icon: "fa-solid fa-plug",
|
90 |
+
text: "Install",
|
91 |
+
href: "install.js",
|
92 |
+
}]
|
93 |
+
}
|
94 |
+
}
|
95 |
+
}
|
pinokio_meta.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"posts": [
|
3 |
+
"https://x.com/cocktailpeanut/status/1835719701172756592",
|
4 |
+
"https://x.com/LikeToasters/status/1834258975384092858",
|
5 |
+
"https://x.com/cocktailpeanut/status/1834245329627009295",
|
6 |
+
"https://x.com/jkch0205/status/1834003420132614450",
|
7 |
+
"https://x.com/huwhitememes/status/1834074992209699132",
|
8 |
+
"https://x.com/GorillaRogueGam/status/1834148656791888139",
|
9 |
+
"https://x.com/cocktailpeanut/status/1833964839519068303",
|
10 |
+
"https://x.com/cocktailpeanut/status/1833935061907079521",
|
11 |
+
"https://x.com/cocktailpeanut/status/1833940728881242135",
|
12 |
+
"https://x.com/cocktailpeanut/status/1833881392482066638",
|
13 |
+
"https://x.com/Alone1Moon/status/1833348850662445369",
|
14 |
+
"https://x.com/_f_ai_9/status/1833485349995397167",
|
15 |
+
"https://x.com/intocryptoast/status/1833061082862412186",
|
16 |
+
"https://x.com/cocktailpeanut/status/1833888423716827321",
|
17 |
+
"https://x.com/cocktailpeanut/status/1833884852992516596",
|
18 |
+
"https://x.com/cocktailpeanut/status/1833885335077417046",
|
19 |
+
"https://x.com/NiwonArt/status/1833565746624139650",
|
20 |
+
"https://x.com/cocktailpeanut/status/1833884361986380117",
|
21 |
+
"https://x.com/NiwonArt/status/1833599399764889685",
|
22 |
+
"https://x.com/LikeToasters/status/1832934391217045913",
|
23 |
+
"https://x.com/cocktailpeanut/status/1832924887456817415",
|
24 |
+
"https://x.com/cocktailpeanut/status/1832927154536902897",
|
25 |
+
"https://x.com/YabaiHamster/status/1832697724690386992",
|
26 |
+
"https://x.com/cocktailpeanut/status/1832747889497366706",
|
27 |
+
"https://x.com/PhotogenicWeekE/status/1832720544959185202",
|
28 |
+
"https://x.com/zuzaritt/status/1832748542164652390",
|
29 |
+
"https://x.com/foxyy4i/status/1832764883710185880",
|
30 |
+
"https://x.com/waynedahlberg/status/1832226132999213095",
|
31 |
+
"https://x.com/PhotoGarrido/status/1832214644515041770",
|
32 |
+
"https://x.com/cocktailpeanut/status/1832787205774786710",
|
33 |
+
"https://x.com/cocktailpeanut/status/1832151307198541961",
|
34 |
+
"https://x.com/cocktailpeanut/status/1832145996014612735",
|
35 |
+
"https://x.com/cocktailpeanut/status/1832084951115972653",
|
36 |
+
"https://x.com/cocktailpeanut/status/1832091112086843684"
|
37 |
+
]
|
38 |
+
}
|
publish_to_hf.png
ADDED
Git LFS Details
|
requirements.txt
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
safetensors
|
2 |
+
git+https://github.com/huggingface/diffusers.git
|
3 |
+
gradio_logsview@https://huggingface.co/spaces/cocktailpeanut/gradio_logsview/resolve/main/gradio_logsview-0.0.17-py3-none-any.whl
|
4 |
+
transformers
|
5 |
+
lycoris-lora==1.8.3
|
6 |
+
flatten_json
|
7 |
+
pyyaml
|
8 |
+
oyaml
|
9 |
+
tensorboard
|
10 |
+
kornia
|
11 |
+
invisible-watermark
|
12 |
+
einops
|
13 |
+
accelerate
|
14 |
+
toml
|
15 |
+
albumentations
|
16 |
+
pydantic
|
17 |
+
omegaconf
|
18 |
+
k-diffusion
|
19 |
+
open_clip_torch
|
20 |
+
timm
|
21 |
+
prodigyopt
|
22 |
+
controlnet_aux==0.0.7
|
23 |
+
python-dotenv
|
24 |
+
bitsandbytes
|
25 |
+
hf_transfer
|
26 |
+
lpips
|
27 |
+
pytorch_fid
|
28 |
+
optimum-quanto
|
29 |
+
sentencepiece
|
30 |
+
huggingface_hub
|
31 |
+
peft
|
32 |
+
gradio
|
33 |
+
python-slugify
|
34 |
+
imagesize
|
reset.js
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
module.exports = {
|
2 |
+
run: [{
|
3 |
+
method: "fs.rm",
|
4 |
+
params: {
|
5 |
+
path: "sd-scripts"
|
6 |
+
}
|
7 |
+
}, {
|
8 |
+
method: "fs.rm",
|
9 |
+
params: {
|
10 |
+
path: "env"
|
11 |
+
}
|
12 |
+
}]
|
13 |
+
}
|
sample.png
ADDED
Git LFS Details
|
sample_fields.png
ADDED
Git LFS Details
|
screenshot.png
ADDED
Git LFS Details
|
seed.gif
ADDED
Git LFS Details
|
start.js
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
module.exports = {
|
2 |
+
daemon: true,
|
3 |
+
run: [
|
4 |
+
{
|
5 |
+
method: "shell.run",
|
6 |
+
params: {
|
7 |
+
venv: "env", // Edit this to customize the venv folder path
|
8 |
+
env: { }, // Edit this to customize environment variables (see documentation)
|
9 |
+
message: [
|
10 |
+
"python app.py", // Edit with your custom commands
|
11 |
+
],
|
12 |
+
on: [{
|
13 |
+
// The regular expression pattern to monitor.
|
14 |
+
// When this pattern occurs in the shell terminal, the shell will return,
|
15 |
+
// and the script will go onto the next step.
|
16 |
+
"event": "/http:\/\/\\S+/",
|
17 |
+
|
18 |
+
// "done": true will move to the next step while keeping the shell alive.
|
19 |
+
// "kill": true will move to the next step after killing the shell.
|
20 |
+
"done": true
|
21 |
+
}]
|
22 |
+
}
|
23 |
+
},
|
24 |
+
{
|
25 |
+
// This step sets the local variable 'url'.
|
26 |
+
// This local variable will be used in pinokio.js to display the "Open WebUI" tab when the value is set.
|
27 |
+
method: "local.set",
|
28 |
+
params: {
|
29 |
+
// the input.event is the regular expression match object from the previous step
|
30 |
+
url: "{{input.event[0]}}"
|
31 |
+
}
|
32 |
+
}
|
33 |
+
]
|
34 |
+
}
|
torch.js
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
module.exports = {
|
2 |
+
run: [
|
3 |
+
// windows nvidia
|
4 |
+
{
|
5 |
+
"when": "{{platform === 'win32' && gpu === 'nvidia'}}",
|
6 |
+
"method": "shell.run",
|
7 |
+
"params": {
|
8 |
+
"venv": "{{args && args.venv ? args.venv : null}}",
|
9 |
+
"path": "{{args && args.path ? args.path : '.'}}",
|
10 |
+
"message": "pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu121"
|
11 |
+
|
12 |
+
}
|
13 |
+
},
|
14 |
+
// windows amd
|
15 |
+
{
|
16 |
+
"when": "{{platform === 'win32' && gpu === 'amd'}}",
|
17 |
+
"method": "shell.run",
|
18 |
+
"params": {
|
19 |
+
"venv": "{{args && args.venv ? args.venv : null}}",
|
20 |
+
"path": "{{args && args.path ? args.path : '.'}}",
|
21 |
+
"message": "pip install torch-directml torchaudio torchvision"
|
22 |
+
}
|
23 |
+
},
|
24 |
+
// windows cpu
|
25 |
+
{
|
26 |
+
"when": "{{platform === 'win32' && (gpu !== 'nvidia' && gpu !== 'amd')}}",
|
27 |
+
"method": "shell.run",
|
28 |
+
"params": {
|
29 |
+
"venv": "{{args && args.venv ? args.venv : null}}",
|
30 |
+
"path": "{{args && args.path ? args.path : '.'}}",
|
31 |
+
"message": "pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cpu"
|
32 |
+
}
|
33 |
+
},
|
34 |
+
// mac
|
35 |
+
{
|
36 |
+
"when": "{{platform === 'darwin'}}",
|
37 |
+
"method": "shell.run",
|
38 |
+
"params": {
|
39 |
+
"venv": "{{args && args.venv ? args.venv : null}}",
|
40 |
+
"path": "{{args && args.path ? args.path : '.'}}",
|
41 |
+
"message": "pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cpu"
|
42 |
+
}
|
43 |
+
},
|
44 |
+
// linux nvidia
|
45 |
+
{
|
46 |
+
"when": "{{platform === 'linux' && gpu === 'nvidia'}}",
|
47 |
+
"method": "shell.run",
|
48 |
+
"params": {
|
49 |
+
"venv": "{{args && args.venv ? args.venv : null}}",
|
50 |
+
"path": "{{args && args.path ? args.path : '.'}}",
|
51 |
+
"message": "pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu121"
|
52 |
+
}
|
53 |
+
},
|
54 |
+
// linux rocm (amd)
|
55 |
+
{
|
56 |
+
"when": "{{platform === 'linux' && gpu === 'amd'}}",
|
57 |
+
"method": "shell.run",
|
58 |
+
"params": {
|
59 |
+
"venv": "{{args && args.venv ? args.venv : null}}",
|
60 |
+
"path": "{{args && args.path ? args.path : '.'}}",
|
61 |
+
"message": "pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm6.1"
|
62 |
+
}
|
63 |
+
},
|
64 |
+
// linux cpu
|
65 |
+
{
|
66 |
+
"when": "{{platform === 'linux' && (gpu !== 'amd' && gpu !=='nvidia')}}",
|
67 |
+
"method": "shell.run",
|
68 |
+
"params": {
|
69 |
+
"venv": "{{args && args.venv ? args.venv : null}}",
|
70 |
+
"path": "{{args && args.path ? args.path : '.'}}",
|
71 |
+
"message": "pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cpu"
|
72 |
+
}
|
73 |
+
}
|
74 |
+
]
|
75 |
+
}
|
update.js
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
module.exports = {
|
2 |
+
run: [{
|
3 |
+
method: "shell.run",
|
4 |
+
params: {
|
5 |
+
message: "git pull"
|
6 |
+
}
|
7 |
+
}, {
|
8 |
+
method: "shell.run",
|
9 |
+
params: {
|
10 |
+
path: "sd-scripts",
|
11 |
+
message: "git pull"
|
12 |
+
}
|
13 |
+
}, {
|
14 |
+
method: "shell.run",
|
15 |
+
params: {
|
16 |
+
path: "sd-scripts",
|
17 |
+
venv: "../env",
|
18 |
+
message: [
|
19 |
+
"pip install -r requirements.txt",
|
20 |
+
]
|
21 |
+
}
|
22 |
+
}, {
|
23 |
+
method: "shell.run",
|
24 |
+
params: {
|
25 |
+
venv: "env",
|
26 |
+
message: [
|
27 |
+
"pip uninstall -y diffusers[torch] torch torchaudio torchvision",
|
28 |
+
"pip install -r requirements.txt",
|
29 |
+
]
|
30 |
+
}
|
31 |
+
}, {
|
32 |
+
method: "script.start",
|
33 |
+
params: {
|
34 |
+
uri: "torch.js",
|
35 |
+
params: {
|
36 |
+
venv: "env",
|
37 |
+
// xformers: true // uncomment this line if your project requires xformers
|
38 |
+
}
|
39 |
+
}
|
40 |
+
}, {
|
41 |
+
method: "fs.link",
|
42 |
+
params: {
|
43 |
+
venv: "env"
|
44 |
+
}
|
45 |
+
}]
|
46 |
+
}
|