File size: 10,301 Bytes
9702b30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import copy
import os
from dataclasses import dataclass
from typing import List, Union
import cv2
import numpy as np
from PIL import Image
import insightface
import onnxruntime
from modules.face_restoration import FaceRestoration
from modules.upscaler import UpscalerData
from scripts.logger import logger
import warnings
np.warnings = warnings
np.warnings.filterwarnings('ignore')
providers = onnxruntime.get_available_providers()
@dataclass
class UpscaleOptions:
do_restore_first: bool = True
scale: int = 1
upscaler: UpscalerData = None
upscale_visibility: float = 0.5
face_restorer: FaceRestoration = None
restorer_visibility: float = 0.5
def cosine_distance(vector1: np.ndarray, vector2: np.ndarray) -> float:
vec1 = vector1.flatten()
vec2 = vector2.flatten()
dot_product = np.dot(vec1, vec2)
norm1 = np.linalg.norm(vec1)
norm2 = np.linalg.norm(vec2)
cosine_distance = 1 - (dot_product / (norm1 * norm2))
return cosine_distance
def cosine_similarity(test_vec: np.ndarray, source_vecs: List[np.ndarray]) -> float:
cos_dist = sum(cosine_distance(test_vec, source_vec) for source_vec in source_vecs)
average_cos_dist = cos_dist / len(source_vecs)
return average_cos_dist
FS_MODEL = None
CURRENT_FS_MODEL_PATH = None
ANALYSIS_MODEL = None
def getAnalysisModel():
global ANALYSIS_MODEL
if ANALYSIS_MODEL is None:
ANALYSIS_MODEL = insightface.app.FaceAnalysis(
name="buffalo_l", providers=providers # note: allowed_modules=['detection', 'genderage']
)
return ANALYSIS_MODEL
def getFaceSwapModel(model_path: str):
global FS_MODEL
global CURRENT_FS_MODEL_PATH
if CURRENT_FS_MODEL_PATH is None or CURRENT_FS_MODEL_PATH != model_path:
CURRENT_FS_MODEL_PATH = model_path
FS_MODEL = insightface.model_zoo.get_model(model_path, providers=providers)
return FS_MODEL
def upscale_image(image: Image, upscale_options: UpscaleOptions):
result_image = image
if upscale_options.do_restore_first:
if upscale_options.face_restorer is not None:
original_image = result_image.copy()
logger.info("Restoring the face with %s", upscale_options.face_restorer.name())
numpy_image = np.array(result_image)
numpy_image = upscale_options.face_restorer.restore(numpy_image)
restored_image = Image.fromarray(numpy_image)
result_image = Image.blend(
original_image, restored_image, upscale_options.restorer_visibility
)
if upscale_options.upscaler is not None and upscale_options.upscaler.name != "None":
original_image = result_image.copy()
logger.info(
"Upscaling with %s scale = %s",
upscale_options.upscaler.name,
upscale_options.scale,
)
result_image = upscale_options.upscaler.scaler.upscale(
original_image, upscale_options.scale, upscale_options.upscaler.data_path
)
if upscale_options.scale == 1:
result_image = Image.blend(
original_image, result_image, upscale_options.upscale_visibility
)
else:
if upscale_options.upscaler is not None and upscale_options.upscaler.name != "None":
original_image = result_image.copy()
logger.info(
"Upscaling with %s scale = %s",
upscale_options.upscaler.name,
upscale_options.scale,
)
result_image = upscale_options.upscaler.scaler.upscale(
image, upscale_options.scale, upscale_options.upscaler.data_path
)
if upscale_options.scale == 1:
result_image = Image.blend(
original_image, result_image, upscale_options.upscale_visibility
)
if upscale_options.face_restorer is not None:
original_image = result_image.copy()
logger.info("Restoring the face with %s", upscale_options.face_restorer.name())
numpy_image = np.array(result_image)
numpy_image = upscale_options.face_restorer.restore(numpy_image)
restored_image = Image.fromarray(numpy_image)
result_image = Image.blend(
original_image, restored_image, upscale_options.restorer_visibility
)
return result_image
def get_face_gender(
face,
face_index,
gender_condition,
operated: str
):
gender = [
x.sex
for x in face
]
gender.reverse()
face_gender = gender[face_index]
logger.info("%s Face %s: Detected Gender -%s-", operated, face_index, face_gender)
if (gender_condition == 1 and face_gender == "F") or (gender_condition == 2 and face_gender == "M"):
logger.info("OK - Detected Gender matches Condition")
try:
return sorted(face, key=lambda x: x.bbox[0])[face_index], 0
except IndexError:
return None, 0
else:
logger.info("WRONG - Detected Gender doesn't match Condition")
return sorted(face, key=lambda x: x.bbox[0])[face_index], 1
def reget_face_single(img_data, det_size, face_index):
det_size_half = (det_size[0] // 2, det_size[1] // 2)
return get_face_single(img_data, face_index=face_index, det_size=det_size_half)
def get_face_single(img_data: np.ndarray, face_index=0, det_size=(640, 640), gender_source=0, gender_target=0):
face_analyser = copy.deepcopy(getAnalysisModel())
face_analyser.prepare(ctx_id=0, det_size=det_size)
face = face_analyser.get(img_data)
if gender_source != 0:
if len(face) == 0 and det_size[0] > 320 and det_size[1] > 320:
return reget_face_single(img_data, det_size, face_index)
return get_face_gender(face,face_index,gender_source,"Source")
if gender_target != 0:
if len(face) == 0 and det_size[0] > 320 and det_size[1] > 320:
return reget_face_single(img_data, det_size, face_index)
return get_face_gender(face,face_index,gender_target,"Target")
if len(face) == 0 and det_size[0] > 320 and det_size[1] > 320:
return reget_face_single(img_data, det_size, face_index)
try:
return sorted(face, key=lambda x: x.bbox[0])[face_index], 0
except IndexError:
return None, 0
def swap_face(
source_img: Image.Image,
target_img: Image.Image,
model: Union[str, None] = None,
source_faces_index: List[int] = [0],
faces_index: List[int] = [0],
upscale_options: Union[UpscaleOptions, None] = None,
gender_source: int = 0,
gender_target: int = 0,
):
result_image = target_img
if model is not None:
if isinstance(source_img, str): # source_img is a base64 string
import base64, io
if 'base64,' in source_img: # check if the base64 string has a data URL scheme
# split the base64 string to get the actual base64 encoded image data
base64_data = source_img.split('base64,')[-1]
# decode base64 string to bytes
img_bytes = base64.b64decode(base64_data)
else:
# if no data URL scheme, just decode
img_bytes = base64.b64decode(source_img)
source_img = Image.open(io.BytesIO(img_bytes))
source_img = cv2.cvtColor(np.array(source_img), cv2.COLOR_RGB2BGR)
target_img = cv2.cvtColor(np.array(target_img), cv2.COLOR_RGB2BGR)
source_face, wrong_gender = get_face_single(source_img, face_index=source_faces_index[0], gender_source=gender_source)
if len(source_faces_index) != 0 and len(source_faces_index) != 1 and len(source_faces_index) != len(faces_index):
logger.info(f'Source Faces must have no entries (default=0), one entry, or same number of entries as target faces.')
elif source_face is not None:
result = target_img
model_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), model)
face_swapper = getFaceSwapModel(model_path)
source_face_idx = 0
for face_num in faces_index:
if len(source_faces_index) > 1 and source_face_idx > 0:
source_face, wrong_gender = get_face_single(source_img, face_index=source_faces_index[source_face_idx], gender_source=gender_source)
source_face_idx += 1
if source_face is not None and wrong_gender == 0:
target_face, wrong_gender = get_face_single(target_img, face_index=face_num, gender_target=gender_target)
if target_face is not None and wrong_gender == 0:
result = face_swapper.get(result, target_face, source_face)
elif wrong_gender == 1:
wrong_gender = 0
if source_face_idx == len(source_faces_index):
result_image = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))
if upscale_options is not None:
result_image = upscale_image(result_image, upscale_options)
return result_image
else:
logger.info(f"No target face found for {face_num}")
elif wrong_gender == 1:
wrong_gender = 0
if source_face_idx == len(source_faces_index):
result_image = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))
if upscale_options is not None:
result_image = upscale_image(result_image, upscale_options)
return result_image
else:
logger.info(f"No source face found for face number {source_face_idx}.")
result_image = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))
if upscale_options is not None and target_face is not None:
result_image = upscale_image(result_image, upscale_options)
else:
logger.info("No source face(s) found")
return result_image
|