File size: 10,301 Bytes
9702b30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import copy
import os
from dataclasses import dataclass
from typing import List, Union

import cv2
import numpy as np
from PIL import Image

import insightface
import onnxruntime

from modules.face_restoration import FaceRestoration
from modules.upscaler import UpscalerData
from scripts.logger import logger

import warnings

np.warnings = warnings
np.warnings.filterwarnings('ignore')

providers = onnxruntime.get_available_providers()


@dataclass
class UpscaleOptions:
    do_restore_first: bool = True
    scale: int = 1
    upscaler: UpscalerData = None
    upscale_visibility: float = 0.5
    face_restorer: FaceRestoration = None
    restorer_visibility: float = 0.5


def cosine_distance(vector1: np.ndarray, vector2: np.ndarray) -> float:
    vec1 = vector1.flatten()
    vec2 = vector2.flatten()

    dot_product = np.dot(vec1, vec2)
    norm1 = np.linalg.norm(vec1)
    norm2 = np.linalg.norm(vec2)

    cosine_distance = 1 - (dot_product / (norm1 * norm2))
    return cosine_distance


def cosine_similarity(test_vec: np.ndarray, source_vecs: List[np.ndarray]) -> float:
    cos_dist = sum(cosine_distance(test_vec, source_vec) for source_vec in source_vecs)
    average_cos_dist = cos_dist / len(source_vecs)
    return average_cos_dist


FS_MODEL = None
CURRENT_FS_MODEL_PATH = None

ANALYSIS_MODEL = None


def getAnalysisModel():
    global ANALYSIS_MODEL
    if ANALYSIS_MODEL is None:
        ANALYSIS_MODEL = insightface.app.FaceAnalysis(
            name="buffalo_l", providers=providers # note: allowed_modules=['detection', 'genderage']
        )
    return ANALYSIS_MODEL


def getFaceSwapModel(model_path: str):
    global FS_MODEL
    global CURRENT_FS_MODEL_PATH
    if CURRENT_FS_MODEL_PATH is None or CURRENT_FS_MODEL_PATH != model_path:
        CURRENT_FS_MODEL_PATH = model_path
        FS_MODEL = insightface.model_zoo.get_model(model_path, providers=providers)

    return FS_MODEL


def upscale_image(image: Image, upscale_options: UpscaleOptions):
    result_image = image
    if upscale_options.do_restore_first:
        if upscale_options.face_restorer is not None:
            original_image = result_image.copy()
            logger.info("Restoring the face with %s", upscale_options.face_restorer.name())
            numpy_image = np.array(result_image)
            numpy_image = upscale_options.face_restorer.restore(numpy_image)
            restored_image = Image.fromarray(numpy_image)
            result_image = Image.blend(
                original_image, restored_image, upscale_options.restorer_visibility
            )
        if upscale_options.upscaler is not None and upscale_options.upscaler.name != "None":
            original_image = result_image.copy()
            logger.info(
                "Upscaling with %s scale = %s",
                upscale_options.upscaler.name,
                upscale_options.scale,
            )
            result_image = upscale_options.upscaler.scaler.upscale(
                original_image, upscale_options.scale, upscale_options.upscaler.data_path
            )
            if upscale_options.scale == 1:
                result_image = Image.blend(
                    original_image, result_image, upscale_options.upscale_visibility
                )
    else:
        if upscale_options.upscaler is not None and upscale_options.upscaler.name != "None":
            original_image = result_image.copy()
            logger.info(
                "Upscaling with %s scale = %s",
                upscale_options.upscaler.name,
                upscale_options.scale,
            )
            result_image = upscale_options.upscaler.scaler.upscale(
                image, upscale_options.scale, upscale_options.upscaler.data_path
            )
            if upscale_options.scale == 1:
                result_image = Image.blend(
                    original_image, result_image, upscale_options.upscale_visibility
                )
        if upscale_options.face_restorer is not None:
            original_image = result_image.copy()
            logger.info("Restoring the face with %s", upscale_options.face_restorer.name())
            numpy_image = np.array(result_image)
            numpy_image = upscale_options.face_restorer.restore(numpy_image)
            restored_image = Image.fromarray(numpy_image)
            result_image = Image.blend(
                original_image, restored_image, upscale_options.restorer_visibility
            )

    return result_image


def get_face_gender(
        face,
        face_index,
        gender_condition,
        operated: str
):
    gender = [
        x.sex
        for x in face
    ]
    gender.reverse()
    face_gender = gender[face_index]
    logger.info("%s Face %s: Detected Gender -%s-", operated, face_index, face_gender)
    if (gender_condition == 1 and face_gender == "F") or (gender_condition == 2 and face_gender == "M"):
        logger.info("OK - Detected Gender matches Condition")
        try:
            return sorted(face, key=lambda x: x.bbox[0])[face_index], 0
        except IndexError:
            return None, 0
    else:
        logger.info("WRONG - Detected Gender doesn't match Condition")
        return sorted(face, key=lambda x: x.bbox[0])[face_index], 1


def reget_face_single(img_data, det_size, face_index):
    det_size_half = (det_size[0] // 2, det_size[1] // 2)
    return get_face_single(img_data, face_index=face_index, det_size=det_size_half)


def get_face_single(img_data: np.ndarray, face_index=0, det_size=(640, 640), gender_source=0, gender_target=0):
    face_analyser = copy.deepcopy(getAnalysisModel())
    face_analyser.prepare(ctx_id=0, det_size=det_size)
    face = face_analyser.get(img_data)

    if gender_source != 0:
        if len(face) == 0 and det_size[0] > 320 and det_size[1] > 320:
            return reget_face_single(img_data, det_size, face_index)
        return get_face_gender(face,face_index,gender_source,"Source")

    if gender_target != 0:
        if len(face) == 0 and det_size[0] > 320 and det_size[1] > 320:
            return reget_face_single(img_data, det_size, face_index)
        return get_face_gender(face,face_index,gender_target,"Target")
    
    if len(face) == 0 and det_size[0] > 320 and det_size[1] > 320:
        return reget_face_single(img_data, det_size, face_index)

    try:
        return sorted(face, key=lambda x: x.bbox[0])[face_index], 0
    except IndexError:
        return None, 0


def swap_face(
    source_img: Image.Image,
    target_img: Image.Image,
    model: Union[str, None] = None,
    source_faces_index: List[int] = [0],
    faces_index: List[int] = [0],
    upscale_options: Union[UpscaleOptions, None] = None,
    gender_source: int = 0,
    gender_target: int = 0,
):
    result_image = target_img
    if model is not None:

        if isinstance(source_img, str):  # source_img is a base64 string
            import base64, io
            if 'base64,' in source_img:  # check if the base64 string has a data URL scheme
                # split the base64 string to get the actual base64 encoded image data
                base64_data = source_img.split('base64,')[-1]
                # decode base64 string to bytes
                img_bytes = base64.b64decode(base64_data)
            else:
                # if no data URL scheme, just decode
                img_bytes = base64.b64decode(source_img)
            
            source_img = Image.open(io.BytesIO(img_bytes))
            
        source_img = cv2.cvtColor(np.array(source_img), cv2.COLOR_RGB2BGR)
        target_img = cv2.cvtColor(np.array(target_img), cv2.COLOR_RGB2BGR)

        source_face, wrong_gender = get_face_single(source_img, face_index=source_faces_index[0], gender_source=gender_source)

        if len(source_faces_index) != 0 and len(source_faces_index) != 1 and len(source_faces_index) != len(faces_index):
            logger.info(f'Source Faces must have no entries (default=0), one entry, or same number of entries as target faces.') 
        elif source_face is not None:
            result = target_img
            model_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), model)
            face_swapper = getFaceSwapModel(model_path)

            source_face_idx = 0

            for face_num in faces_index:
                if len(source_faces_index) > 1 and source_face_idx > 0:
                    source_face, wrong_gender = get_face_single(source_img, face_index=source_faces_index[source_face_idx], gender_source=gender_source)
                source_face_idx += 1

                if source_face is not None and wrong_gender == 0:
                    target_face, wrong_gender = get_face_single(target_img, face_index=face_num, gender_target=gender_target)
                    if target_face is not None and wrong_gender == 0:
                        result = face_swapper.get(result, target_face, source_face)
                    elif wrong_gender == 1:
                        wrong_gender = 0
                        if source_face_idx == len(source_faces_index):
                            result_image = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))
                            if upscale_options is not None:
                                result_image = upscale_image(result_image, upscale_options)
                            return result_image
                    else:
                        logger.info(f"No target face found for {face_num}")
                elif wrong_gender == 1:
                    wrong_gender = 0
                    if source_face_idx == len(source_faces_index):
                        result_image = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))
                        if upscale_options is not None:
                            result_image = upscale_image(result_image, upscale_options)
                        return result_image
                else:
                    logger.info(f"No source face found for face number {source_face_idx}.")

            result_image = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))
            if upscale_options is not None and target_face is not None:
                result_image = upscale_image(result_image, upscale_options)

        else:
            logger.info("No source face(s) found")
    return result_image