|
import gradio as gr |
|
import modules.scripts as scripts |
|
from modules.upscaler import Upscaler, UpscalerData |
|
from modules import scripts, shared, images, scripts_postprocessing |
|
from modules.processing import ( |
|
StableDiffusionProcessing, |
|
StableDiffusionProcessingImg2Img, |
|
) |
|
from modules.shared import cmd_opts, opts, state |
|
from PIL import Image |
|
import glob |
|
from modules.face_restoration import FaceRestoration |
|
|
|
from scripts.logger import logger |
|
from scripts.swapper import UpscaleOptions, swap_face |
|
from scripts.version import version_flag, app_title |
|
from scripts.console_log_patch import apply_logging_patch |
|
import os |
|
|
|
MODELS_PATH = None |
|
|
|
def get_models(): |
|
global MODELS_PATH |
|
models_path = os.path.join(scripts.basedir(), "models/roop/*") |
|
models = glob.glob(models_path) |
|
models = [x for x in models if x.endswith(".onnx") or x.endswith(".pth")] |
|
models_names = [] |
|
for model in models: |
|
model_path = os.path.split(model) |
|
if MODELS_PATH is None: |
|
MODELS_PATH = model_path[0] |
|
model_name = model_path[1] |
|
models_names.append(model_name) |
|
return models_names |
|
|
|
|
|
class FaceSwapScript(scripts.Script): |
|
def title(self): |
|
return f"{app_title}" |
|
|
|
def show(self, is_img2img): |
|
return scripts.AlwaysVisible |
|
|
|
def ui(self, is_img2img): |
|
with gr.Accordion(f"{app_title}", open=False): |
|
with gr.Column(): |
|
img = gr.inputs.Image(type="pil") |
|
enable = gr.Checkbox(False, label="Enable", info=f"The Fast and Simple \"roop-based\" FaceSwap Extension - {version_flag}") |
|
gr.Markdown("---") |
|
gr.Markdown("Source Image (above):") |
|
with gr.Row(): |
|
source_faces_index = gr.Textbox( |
|
value="0", |
|
placeholder="Which face(s) to use as Source (comma separated)", |
|
label="Comma separated face number(s); Example: 0,2,1", |
|
) |
|
gender_source = gr.Radio( |
|
["No", "Female Only", "Male Only"], |
|
value="No", |
|
label="Gender Detection (Source)", |
|
type="index", |
|
) |
|
gr.Markdown("---") |
|
gr.Markdown("Target Image (result):") |
|
with gr.Row(): |
|
faces_index = gr.Textbox( |
|
value="0", |
|
placeholder="Which face(s) to Swap into Target (comma separated)", |
|
label="Comma separated face number(s); Example: 1,0,2", |
|
) |
|
gender_target = gr.Radio( |
|
["No", "Female Only", "Male Only"], |
|
value="No", |
|
label="Gender Detection (Target)", |
|
type="index", |
|
) |
|
gr.Markdown("---") |
|
with gr.Row(): |
|
face_restorer_name = gr.Radio( |
|
label="Restore Face", |
|
choices=["None"] + [x.name() for x in shared.face_restorers], |
|
value=shared.face_restorers[0].name(), |
|
type="value", |
|
) |
|
face_restorer_visibility = gr.Slider( |
|
0, 1, 1, step=0.1, label="Restore Face Visibility" |
|
) |
|
restore_first = gr.Checkbox( |
|
True, |
|
label="1. Restore Face -> 2. Upscale (-Uncheck- if you want vice versa)", |
|
info="Postprocessing Order" |
|
) |
|
upscaler_name = gr.inputs.Dropdown( |
|
choices=[upscaler.name for upscaler in shared.sd_upscalers], |
|
label="Upscaler", |
|
) |
|
with gr.Row(): |
|
upscaler_scale = gr.Slider(1, 8, 1, step=0.1, label="Scale by") |
|
upscaler_visibility = gr.Slider( |
|
0, 1, 1, step=0.1, label="Upscaler Visibility (if scale = 1)" |
|
) |
|
gr.Markdown("---") |
|
swap_in_source = gr.Checkbox( |
|
False, |
|
label="Swap in source image", |
|
visible=is_img2img, |
|
) |
|
swap_in_generated = gr.Checkbox( |
|
True, |
|
label="Swap in generated image", |
|
visible=is_img2img, |
|
) |
|
|
|
models = get_models() |
|
with gr.Row(): |
|
if len(models) == 0: |
|
logger.warning( |
|
"You should at least have one model in models directory, please read the doc here : https://github.com/Gourieff/sd-webui-reactor/" |
|
) |
|
model = gr.inputs.Dropdown( |
|
choices=models, |
|
label="Model not found, please download one and reload WebUI", |
|
) |
|
else: |
|
model = gr.inputs.Dropdown( |
|
choices=models, label="Model", default=models[0] |
|
) |
|
console_logging_level = gr.Radio( |
|
["No log", "Minimum", "Default"], |
|
value="Minimum", |
|
label="Console Log Level", |
|
type="index", |
|
) |
|
gr.Markdown("---") |
|
|
|
return [ |
|
img, |
|
enable, |
|
source_faces_index, |
|
faces_index, |
|
model, |
|
face_restorer_name, |
|
face_restorer_visibility, |
|
restore_first, |
|
upscaler_name, |
|
upscaler_scale, |
|
upscaler_visibility, |
|
swap_in_source, |
|
swap_in_generated, |
|
console_logging_level, |
|
gender_source, |
|
gender_target, |
|
] |
|
|
|
|
|
@property |
|
def upscaler(self) -> UpscalerData: |
|
for upscaler in shared.sd_upscalers: |
|
if upscaler.name == self.upscaler_name: |
|
return upscaler |
|
return None |
|
|
|
@property |
|
def face_restorer(self) -> FaceRestoration: |
|
for face_restorer in shared.face_restorers: |
|
if face_restorer.name() == self.face_restorer_name: |
|
return face_restorer |
|
return None |
|
|
|
@property |
|
def upscale_options(self) -> UpscaleOptions: |
|
return UpscaleOptions( |
|
do_restore_first = self.restore_first, |
|
scale=self.upscaler_scale, |
|
upscaler=self.upscaler, |
|
face_restorer=self.face_restorer, |
|
upscale_visibility=self.upscaler_visibility, |
|
restorer_visibility=self.face_restorer_visibility, |
|
) |
|
|
|
def process( |
|
self, |
|
p: StableDiffusionProcessing, |
|
img, |
|
enable, |
|
source_faces_index, |
|
faces_index, |
|
model, |
|
face_restorer_name, |
|
face_restorer_visibility, |
|
restore_first, |
|
upscaler_name, |
|
upscaler_scale, |
|
upscaler_visibility, |
|
swap_in_source, |
|
swap_in_generated, |
|
console_logging_level, |
|
gender_source, |
|
gender_target, |
|
): |
|
self.enable = enable |
|
if self.enable: |
|
|
|
global MODELS_PATH |
|
self.source = img |
|
self.face_restorer_name = face_restorer_name |
|
self.upscaler_scale = upscaler_scale |
|
self.upscaler_visibility = upscaler_visibility |
|
self.face_restorer_visibility = face_restorer_visibility |
|
self.restore_first = restore_first |
|
self.upscaler_name = upscaler_name |
|
self.swap_in_generated = swap_in_generated |
|
self.model = os.path.join(MODELS_PATH,model) |
|
self.console_logging_level = console_logging_level |
|
self.gender_source = gender_source |
|
self.gender_target = gender_target |
|
self.source_faces_index = [ |
|
int(x) for x in source_faces_index.strip(",").split(",") if x.isnumeric() |
|
] |
|
self.faces_index = [ |
|
int(x) for x in faces_index.strip(",").split(",") if x.isnumeric() |
|
] |
|
if len(self.source_faces_index) == 0: |
|
self.source_faces_index = [0] |
|
if len(self.faces_index) == 0: |
|
self.faces_index = [0] |
|
|
|
if self.source is not None: |
|
apply_logging_patch(console_logging_level) |
|
if isinstance(p, StableDiffusionProcessingImg2Img) and swap_in_source: |
|
logger.info(f"Working: source face index %s, target face index %s", self.source_faces_index, self.faces_index) |
|
|
|
for i in range(len(p.init_images)): |
|
logger.info(f"Swap in %s", i) |
|
result = swap_face( |
|
self.source, |
|
p.init_images[i], |
|
source_faces_index=self.source_faces_index, |
|
faces_index=self.faces_index, |
|
model=self.model, |
|
upscale_options=self.upscale_options, |
|
gender_source=self.gender_source, |
|
gender_target=self.gender_target, |
|
) |
|
p.init_images[i] = result |
|
else: |
|
logger.error(f"Please provide a source face") |
|
|
|
def postprocess_batch(self, p, *args, **kwargs): |
|
if self.enable: |
|
images = kwargs["images"] |
|
|
|
def postprocess_image(self, p, script_pp: scripts.PostprocessImageArgs, *args): |
|
if self.enable and self.swap_in_generated: |
|
if self.source is not None: |
|
logger.info(f"Working: source face index %s, target face index %s", self.source_faces_index, self.faces_index) |
|
image: Image.Image = script_pp.image |
|
result = swap_face( |
|
self.source, |
|
image, |
|
source_faces_index=self.source_faces_index, |
|
faces_index=self.faces_index, |
|
model=self.model, |
|
upscale_options=self.upscale_options, |
|
gender_source=self.gender_source, |
|
gender_target=self.gender_target, |
|
) |
|
try: |
|
pp = scripts_postprocessing.PostprocessedImage(result) |
|
pp.info = {} |
|
p.extra_generation_params.update(pp.info) |
|
script_pp.image = pp.image |
|
except: |
|
logger.error(f"Cannot create a result image") |
|
|