|
import copy |
|
import os |
|
from dataclasses import dataclass |
|
from typing import List, Union |
|
|
|
import cv2 |
|
import numpy as np |
|
from PIL import Image |
|
|
|
import insightface |
|
import onnxruntime |
|
|
|
from modules.face_restoration import FaceRestoration |
|
from modules.upscaler import UpscalerData |
|
from scripts.logger import logger |
|
|
|
import warnings |
|
|
|
np.warnings = warnings |
|
np.warnings.filterwarnings('ignore') |
|
|
|
providers = onnxruntime.get_available_providers() |
|
|
|
|
|
@dataclass |
|
class UpscaleOptions: |
|
do_restore_first: bool = True |
|
scale: int = 1 |
|
upscaler: UpscalerData = None |
|
upscale_visibility: float = 0.5 |
|
face_restorer: FaceRestoration = None |
|
restorer_visibility: float = 0.5 |
|
|
|
|
|
def cosine_distance(vector1: np.ndarray, vector2: np.ndarray) -> float: |
|
vec1 = vector1.flatten() |
|
vec2 = vector2.flatten() |
|
|
|
dot_product = np.dot(vec1, vec2) |
|
norm1 = np.linalg.norm(vec1) |
|
norm2 = np.linalg.norm(vec2) |
|
|
|
cosine_distance = 1 - (dot_product / (norm1 * norm2)) |
|
return cosine_distance |
|
|
|
|
|
def cosine_similarity(test_vec: np.ndarray, source_vecs: List[np.ndarray]) -> float: |
|
cos_dist = sum(cosine_distance(test_vec, source_vec) for source_vec in source_vecs) |
|
average_cos_dist = cos_dist / len(source_vecs) |
|
return average_cos_dist |
|
|
|
|
|
FS_MODEL = None |
|
CURRENT_FS_MODEL_PATH = None |
|
|
|
ANALYSIS_MODEL = None |
|
|
|
|
|
def getAnalysisModel(): |
|
global ANALYSIS_MODEL |
|
if ANALYSIS_MODEL is None: |
|
ANALYSIS_MODEL = insightface.app.FaceAnalysis( |
|
name="buffalo_l", providers=providers |
|
) |
|
return ANALYSIS_MODEL |
|
|
|
|
|
def getFaceSwapModel(model_path: str): |
|
global FS_MODEL |
|
global CURRENT_FS_MODEL_PATH |
|
if CURRENT_FS_MODEL_PATH is None or CURRENT_FS_MODEL_PATH != model_path: |
|
CURRENT_FS_MODEL_PATH = model_path |
|
FS_MODEL = insightface.model_zoo.get_model(model_path, providers=providers) |
|
|
|
return FS_MODEL |
|
|
|
|
|
def upscale_image(image: Image, upscale_options: UpscaleOptions): |
|
result_image = image |
|
if upscale_options.do_restore_first: |
|
if upscale_options.face_restorer is not None: |
|
original_image = result_image.copy() |
|
logger.info("Restoring the face with %s", upscale_options.face_restorer.name()) |
|
numpy_image = np.array(result_image) |
|
numpy_image = upscale_options.face_restorer.restore(numpy_image) |
|
restored_image = Image.fromarray(numpy_image) |
|
result_image = Image.blend( |
|
original_image, restored_image, upscale_options.restorer_visibility |
|
) |
|
if upscale_options.upscaler is not None and upscale_options.upscaler.name != "None": |
|
original_image = result_image.copy() |
|
logger.info( |
|
"Upscaling with %s scale = %s", |
|
upscale_options.upscaler.name, |
|
upscale_options.scale, |
|
) |
|
result_image = upscale_options.upscaler.scaler.upscale( |
|
original_image, upscale_options.scale, upscale_options.upscaler.data_path |
|
) |
|
if upscale_options.scale == 1: |
|
result_image = Image.blend( |
|
original_image, result_image, upscale_options.upscale_visibility |
|
) |
|
else: |
|
if upscale_options.upscaler is not None and upscale_options.upscaler.name != "None": |
|
original_image = result_image.copy() |
|
logger.info( |
|
"Upscaling with %s scale = %s", |
|
upscale_options.upscaler.name, |
|
upscale_options.scale, |
|
) |
|
result_image = upscale_options.upscaler.scaler.upscale( |
|
image, upscale_options.scale, upscale_options.upscaler.data_path |
|
) |
|
if upscale_options.scale == 1: |
|
result_image = Image.blend( |
|
original_image, result_image, upscale_options.upscale_visibility |
|
) |
|
if upscale_options.face_restorer is not None: |
|
original_image = result_image.copy() |
|
logger.info("Restoring the face with %s", upscale_options.face_restorer.name()) |
|
numpy_image = np.array(result_image) |
|
numpy_image = upscale_options.face_restorer.restore(numpy_image) |
|
restored_image = Image.fromarray(numpy_image) |
|
result_image = Image.blend( |
|
original_image, restored_image, upscale_options.restorer_visibility |
|
) |
|
|
|
return result_image |
|
|
|
|
|
def get_face_gender( |
|
face, |
|
face_index, |
|
gender_condition, |
|
operated: str |
|
): |
|
gender = [ |
|
x.sex |
|
for x in face |
|
] |
|
gender.reverse() |
|
face_gender = gender[face_index] |
|
logger.info("%s Face %s: Detected Gender -%s-", operated, face_index, face_gender) |
|
if (gender_condition == 1 and face_gender == "F") or (gender_condition == 2 and face_gender == "M"): |
|
logger.info("OK - Detected Gender matches Condition") |
|
try: |
|
return sorted(face, key=lambda x: x.bbox[0])[face_index], 0 |
|
except IndexError: |
|
return None, 0 |
|
else: |
|
logger.info("WRONG - Detected Gender doesn't match Condition") |
|
return sorted(face, key=lambda x: x.bbox[0])[face_index], 1 |
|
|
|
|
|
def reget_face_single(img_data, det_size, face_index): |
|
det_size_half = (det_size[0] // 2, det_size[1] // 2) |
|
return get_face_single(img_data, face_index=face_index, det_size=det_size_half) |
|
|
|
|
|
def get_face_single(img_data: np.ndarray, face_index=0, det_size=(640, 640), gender_source=0, gender_target=0): |
|
face_analyser = copy.deepcopy(getAnalysisModel()) |
|
face_analyser.prepare(ctx_id=0, det_size=det_size) |
|
face = face_analyser.get(img_data) |
|
|
|
if gender_source != 0: |
|
if len(face) == 0 and det_size[0] > 320 and det_size[1] > 320: |
|
return reget_face_single(img_data, det_size, face_index) |
|
return get_face_gender(face,face_index,gender_source,"Source") |
|
|
|
if gender_target != 0: |
|
if len(face) == 0 and det_size[0] > 320 and det_size[1] > 320: |
|
return reget_face_single(img_data, det_size, face_index) |
|
return get_face_gender(face,face_index,gender_target,"Target") |
|
|
|
if len(face) == 0 and det_size[0] > 320 and det_size[1] > 320: |
|
return reget_face_single(img_data, det_size, face_index) |
|
|
|
try: |
|
return sorted(face, key=lambda x: x.bbox[0])[face_index], 0 |
|
except IndexError: |
|
return None, 0 |
|
|
|
|
|
def swap_face( |
|
source_img: Image.Image, |
|
target_img: Image.Image, |
|
model: Union[str, None] = None, |
|
source_faces_index: List[int] = [0], |
|
faces_index: List[int] = [0], |
|
upscale_options: Union[UpscaleOptions, None] = None, |
|
gender_source: int = 0, |
|
gender_target: int = 0, |
|
): |
|
result_image = target_img |
|
if model is not None: |
|
|
|
if isinstance(source_img, str): |
|
import base64, io |
|
if 'base64,' in source_img: |
|
|
|
base64_data = source_img.split('base64,')[-1] |
|
|
|
img_bytes = base64.b64decode(base64_data) |
|
else: |
|
|
|
img_bytes = base64.b64decode(source_img) |
|
|
|
source_img = Image.open(io.BytesIO(img_bytes)) |
|
|
|
source_img = cv2.cvtColor(np.array(source_img), cv2.COLOR_RGB2BGR) |
|
target_img = cv2.cvtColor(np.array(target_img), cv2.COLOR_RGB2BGR) |
|
|
|
source_face, wrong_gender = get_face_single(source_img, face_index=source_faces_index[0], gender_source=gender_source) |
|
|
|
if len(source_faces_index) != 0 and len(source_faces_index) != 1 and len(source_faces_index) != len(faces_index): |
|
logger.info(f'Source Faces must have no entries (default=0), one entry, or same number of entries as target faces.') |
|
elif source_face is not None: |
|
result = target_img |
|
model_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), model) |
|
face_swapper = getFaceSwapModel(model_path) |
|
|
|
source_face_idx = 0 |
|
|
|
for face_num in faces_index: |
|
if len(source_faces_index) > 1 and source_face_idx > 0: |
|
source_face, wrong_gender = get_face_single(source_img, face_index=source_faces_index[source_face_idx], gender_source=gender_source) |
|
source_face_idx += 1 |
|
|
|
if source_face is not None and wrong_gender == 0: |
|
target_face, wrong_gender = get_face_single(target_img, face_index=face_num, gender_target=gender_target) |
|
if target_face is not None and wrong_gender == 0: |
|
result = face_swapper.get(result, target_face, source_face) |
|
elif wrong_gender == 1: |
|
wrong_gender = 0 |
|
if source_face_idx == len(source_faces_index): |
|
result_image = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB)) |
|
if upscale_options is not None: |
|
result_image = upscale_image(result_image, upscale_options) |
|
return result_image |
|
else: |
|
logger.info(f"No target face found for {face_num}") |
|
elif wrong_gender == 1: |
|
wrong_gender = 0 |
|
if source_face_idx == len(source_faces_index): |
|
result_image = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB)) |
|
if upscale_options is not None: |
|
result_image = upscale_image(result_image, upscale_options) |
|
return result_image |
|
else: |
|
logger.info(f"No source face found for face number {source_face_idx}.") |
|
|
|
result_image = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB)) |
|
if upscale_options is not None and target_face is not None: |
|
result_image = upscale_image(result_image, upscale_options) |
|
|
|
else: |
|
logger.info("No source face(s) found") |
|
return result_image |
|
|