koleksiekstensi / depthmap2mask /scripts /depthmap_for_depth2img.py
crystantine's picture
Upload 4 files
46a3b13
import torch, gc
import cv2
import requests
import os.path
import contextlib
from PIL import Image
from modules.shared import opts, cmd_opts
from modules import processing, images, shared, devices
import os
from torchvision.transforms import Compose
from repositories.midas.midas.dpt_depth import DPTDepthModel
from repositories.midas.midas.midas_net import MidasNet
from repositories.midas.midas.midas_net_custom import MidasNet_small
from repositories.midas.midas.transforms import Resize, NormalizeImage, PrepareForNet
import numpy as np
def load_model(device, model_path, model_type="dpt_large_384", optimize=True, size=None, square=False):
"""Load the specified network.
Args:
device (device): the torch device used
model_path (str): path to saved model
model_type (str): the type of the model to be loaded
optimize (bool): optimize the model to half-integer on CUDA?
size (int, int): inference encoder image size
square (bool): resize to a square resolution?
Returns:
The loaded network, the transform which prepares images as input to the network and the dimensions of the
network input
"""
if "openvino" in model_type:
from openvino.runtime import Core
keep_aspect_ratio = not square
if model_type == "dpt_beit_large_512":
model = DPTDepthModel(
path=model_path,
backbone="beitl16_512",
non_negative=True,
)
net_w, net_h = 512, 512
resize_mode = "minimal"
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
elif model_type == "dpt_beit_large_384":
model = DPTDepthModel(
path=model_path,
backbone="beitl16_384",
non_negative=True,
)
net_w, net_h = 384, 384
resize_mode = "minimal"
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
elif model_type == "dpt_beit_base_384":
model = DPTDepthModel(
path=model_path,
backbone="beitb16_384",
non_negative=True,
)
net_w, net_h = 384, 384
resize_mode = "minimal"
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
elif model_type == "dpt_swin2_large_384":
model = DPTDepthModel(
path=model_path,
backbone="swin2l24_384",
non_negative=True,
)
net_w, net_h = 384, 384
keep_aspect_ratio = False
resize_mode = "minimal"
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
elif model_type == "dpt_swin2_base_384":
model = DPTDepthModel(
path=model_path,
backbone="swin2b24_384",
non_negative=True,
)
net_w, net_h = 384, 384
keep_aspect_ratio = False
resize_mode = "minimal"
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
elif model_type == "dpt_swin2_tiny_256":
model = DPTDepthModel(
path=model_path,
backbone="swin2t16_256",
non_negative=True,
)
net_w, net_h = 256, 256
keep_aspect_ratio = False
resize_mode = "minimal"
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
elif model_type == "dpt_swin_large_384":
model = DPTDepthModel(
path=model_path,
backbone="swinl12_384",
non_negative=True,
)
net_w, net_h = 384, 384
keep_aspect_ratio = False
resize_mode = "minimal"
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
elif model_type == "dpt_next_vit_large_384":
model = DPTDepthModel(
path=model_path,
backbone="next_vit_large_6m",
non_negative=True,
)
net_w, net_h = 384, 384
resize_mode = "minimal"
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
# We change the notation from dpt_levit_224 (MiDaS notation) to levit_384 (timm notation) here, where the 224 refers
# to the resolution 224x224 used by LeViT and 384 is the first entry of the embed_dim, see _cfg and model_cfgs of
# https://github.com/rwightman/pytorch-image-models/blob/main/timm/models/levit.py
# (commit id: 927f031293a30afb940fff0bee34b85d9c059b0e)
elif model_type == "dpt_levit_224":
model = DPTDepthModel(
path=model_path,
backbone="levit_384",
non_negative=True,
head_features_1=64,
head_features_2=8,
)
net_w, net_h = 224, 224
keep_aspect_ratio = False
resize_mode = "minimal"
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
elif model_type == "dpt_large_384":
model = DPTDepthModel(
path=model_path,
backbone="vitl16_384",
non_negative=True,
)
net_w, net_h = 384, 384
resize_mode = "minimal"
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
elif model_type == "dpt_hybrid_384":
model = DPTDepthModel(
path=model_path,
backbone="vitb_rn50_384",
non_negative=True,
)
net_w, net_h = 384, 384
resize_mode = "minimal"
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
elif model_type == "midas_v21_384":
model = MidasNet(model_path, non_negative=True)
net_w, net_h = 384, 384
resize_mode = "upper_bound"
normalization = NormalizeImage(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
elif model_type == "midas_v21_small_256":
model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True,
non_negative=True, blocks={'expand': True})
net_w, net_h = 256, 256
resize_mode = "upper_bound"
normalization = NormalizeImage(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
elif model_type == "openvino_midas_v21_small_256":
ie = Core()
uncompiled_model = ie.read_model(model=model_path)
model = ie.compile_model(uncompiled_model, "CPU")
net_w, net_h = 256, 256
resize_mode = "upper_bound"
normalization = NormalizeImage(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
else:
print(f"model_type '{model_type}' not implemented, use: --model_type large")
assert False
if not "openvino" in model_type:
print("Model loaded, number of parameters = {:.0f}M".format(sum(p.numel() for p in model.parameters()) / 1e6))
else:
print("Model loaded, optimized with OpenVINO")
if "openvino" in model_type:
keep_aspect_ratio = False
if size is not None:
net_w, net_h = size
transform = Compose(
[
Resize(
net_w,
net_h,
resize_target=None,
keep_aspect_ratio=keep_aspect_ratio,
ensure_multiple_of=32,
resize_method=resize_mode,
image_interpolation_method=cv2.INTER_CUBIC,
),
normalization,
PrepareForNet(),
]
)
if not "openvino" in model_type:
model.eval()
if optimize and (device == torch.device("cuda")):
if not "openvino" in model_type:
model = model.to(memory_format=torch.channels_last)
model = model.half()
else:
print("Error: OpenVINO models are already optimized. No optimization to half-float possible.")
exit()
if not "openvino" in model_type:
model.to(device)
return model, transform
class SimpleDepthMapGenerator(object):
def calculate_depth_maps(self,image,img_x,img_y,model_type_index,invert_depth):
try:
model = None
def download_file(filename, url):
print(f"download {filename} form {url}")
import sys
try:
with open(filename+'.tmp', "wb") as f:
response = requests.get(url, stream=True)
total_length = response.headers.get('content-length')
if total_length is None: # no content length header
f.write(response.content)
else:
dl = 0
total_length = int(total_length)
for data in response.iter_content(chunk_size=4096):
dl += len(data)
f.write(data)
done = int(50 * dl / total_length)
sys.stdout.write("\r[%s%s]" % ('=' * done, ' ' * (50-done)) )
sys.stdout.flush()
os.rename(filename+'.tmp', filename)
except Exception as e:
os.remove(filename+'.tmp')
print("\n--------download fail------------\n")
raise e
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# model path and name
model_dir = "./models/midas"
# create path to model if not present
os.makedirs(model_dir, exist_ok=True)
print("Loading midas model weights ..")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
models = ["dpt_beit_large_512",
"dpt_beit_large_384",
"dpt_beit_base_384",
"dpt_swin2_large_384",
"dpt_swin2_base_384",
"dpt_swin2_tiny_256",
"dpt_swin_large_384",
"dpt_next_vit_large_384",
"dpt_levit_224",
"dpt_large_384",
"dpt_hybrid_384",
"midas_v21_384",
"midas_v21_small_256",
# "openvino_midas_v21_small_256"
]
model_path = model_dir + '/' + models[model_type_index] + '.pt'
if not os.path.exists(model_path):
if models.index("midas_v21_384") <= model_type_index:
download_file(model_path, "https://github.com/isl-org/MiDaS/releases/download/v2_1/"+ models[model_type_index] + ".pt")
elif models.index("midas_v21_384") > model_type_index > models.index("dpt_large_384"):
download_file(model_path, "https://github.com/isl-org/MiDaS/releases/download/v3/"+ models[model_type_index] + ".pt")
else:
download_file(model_path, "https://github.com/isl-org/MiDaS/releases/download/v3_1/"+ models[model_type_index] + ".pt")
model, transform = load_model(device, model_path, models[model_type_index], (img_x, img_y))
img = cv2.cvtColor(np.asarray(image), cv2.COLOR_BGR2RGB) / 255.0
img_input = transform({"image": img})["image"]
precision_scope = torch.autocast if shared.cmd_opts.precision == "autocast" and device == torch.device("cuda") else contextlib.nullcontext
# compute
with torch.no_grad(), precision_scope("cuda"):
sample = torch.from_numpy(img_input).to(device).unsqueeze(0)
if device == torch.device("cuda"):
sample = sample.to(memory_format=torch.channels_last)
if not cmd_opts.no_half:
sample = sample.half()
prediction = model.forward(sample)
prediction = (
torch.nn.functional.interpolate(
prediction.unsqueeze(1),
size=img.shape[:2],
mode="bicubic",
align_corners=False,
)
.squeeze()
.cpu()
.numpy()
)
# output
depth = prediction
numbytes=2
depth_min = depth.min()
depth_max = depth.max()
max_val = (2**(8*numbytes))-1
# check output before normalizing and mapping to 16 bit
if depth_max - depth_min > np.finfo("float").eps:
out = max_val * (depth - depth_min) / (depth_max - depth_min)
else:
out = np.zeros(depth.shape)
# single channel, 16 bit image
img_output = out.astype("uint16")
# # invert depth map
if invert_depth:
img_output = cv2.bitwise_not(img_output)
# three channel, 8 bits per channel image
img_output2 = np.zeros_like(image)
img_output2[:,:,0] = img_output / 256.0
img_output2[:,:,1] = img_output / 256.0
img_output2[:,:,2] = img_output / 256.0
img = Image.fromarray(img_output2)
return img
except Exception:
raise
finally:
del model
gc.collect()
devices.torch_gc()