from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images, images, fix_seed from modules.shared import opts, cmd_opts, state from PIL import Image, ImageOps from math import ceil import cv2 import modules.scripts as scripts from modules import sd_samplers from random import randint, shuffle import random from skimage.util import random_noise import gradio as gr import numpy as np import sys import os import copy import importlib.util def module_from_file(module_name, file_path): spec = importlib.util.spec_from_file_location(module_name, file_path) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) return module class Script(scripts.Script): def title(self): return "Depth aware img2img mask" def show(self, is_img2img): return is_img2img def ui(self, is_img2img): if not is_img2img: return models = ["dpt_beit_large_512", "dpt_beit_large_384", "dpt_beit_base_384", "dpt_swin2_large_384", "dpt_swin2_base_384", "dpt_swin2_tiny_256", "dpt_swin_large_384", "dpt_next_vit_large_384", "dpt_levit_224", "dpt_large_384", "dpt_hybrid_384", "midas_v21_384", "midas_v21_small_256", # "openvino_midas_v21_small_256" ] treshold = gr.Slider(minimum=0, maximum=255, step=1, label='Contrasts cut level', value=0) match_size = gr.Checkbox(label="Match input size",value=True) net_width = gr.Slider(minimum=64, maximum=2048, step=64, label='Net width', value=384) net_height = gr.Slider(minimum=64, maximum=2048, step=64, label='Net height', value=384) with gr.Row(): invert_depth = gr.Checkbox(label="Invert DepthMap",value=False) save_depthmap = gr.Checkbox(label='Save depth map', value=False) save_alpha_crop = gr.Checkbox(label='Save alpha crop', value=False) override_mask_blur = gr.Checkbox(label='Override mask blur to 0', value=True) override_fill = gr.Checkbox(label='Override inpaint to original', value=True) clean_cut = gr.Checkbox(label='Turn the depthmap into absolute black/white', value=False) model_type = gr.Dropdown(label="Model", choices=models, value="dpt_swin2_base_384", type="index", elem_id="model_type") # model_type = gr.Dropdown(label="Model", choices=['dpt_large','dpt_hybrid','midas_v21','midas_v21_small'], value='dpt_large', type="index", elem_id="model_type") return [save_depthmap,treshold,match_size,net_width,net_height,invert_depth,model_type,override_mask_blur,override_fill,clean_cut, save_alpha_crop] def run(self,p,save_depthmap,treshold,match_size,net_width,net_height,invert_depth,model_type,override_mask_blur,override_fill,clean_cut, save_alpha_crop): def remap_range(value, minIn, MaxIn, minOut, maxOut): if value > MaxIn: value = MaxIn; if value < minIn: value = minIn; finalValue = ((value - minIn) / (MaxIn - minIn)) * (maxOut - minOut) + minOut; return finalValue; def create_depth_mask_from_depth_map(img,save_depthmap,p,treshold,clean_cut, save_alpha_crop): img = copy.deepcopy(img.convert("RGBA")) mask_img = copy.deepcopy(img.convert("L")) mask_datas = mask_img.getdata() datas = img.getdata() newData = [] maxD = max(mask_datas) if clean_cut and treshold == 0: treshold = 128 for i in range(len(mask_datas)): if clean_cut and mask_datas[i] > treshold: newrgb = 255 elif mask_datas[i] > treshold and not clean_cut: newrgb = int(remap_range(mask_datas[i],treshold,255,0,255)) else: newrgb = 0 newData.append((newrgb,newrgb,newrgb,255)) img.putdata(newData) return img sdmg = module_from_file("depthmap_for_depth2img",'extensions/depthmap2mask/scripts/depthmap_for_depth2img.py') sdmg = sdmg.SimpleDepthMapGenerator() #import midas img_x = p.width if match_size else net_width img_y = p.height if match_size else net_height d_m = sdmg.calculate_depth_maps(p.init_images[0],img_x,img_y,model_type,invert_depth) if treshold > 0 or clean_cut: d_m = create_depth_mask_from_depth_map(d_m,save_depthmap,p,treshold,clean_cut, save_alpha_crop) if save_depthmap: images.save_image(d_m, p.outpath_samples, "", p.seed, p.prompt, opts.samples_format, p=p) if save_alpha_crop: alpha_crop = p.init_images[0].copy() alpha_crop.putalpha(d_m.convert("L")) images.save_image(alpha_crop, p.outpath_samples, "alpha-crop", p.seed, p.prompt, opts.samples_format, p=p) p.image_mask = d_m if override_mask_blur: p.mask_blur = 0 if override_fill: p.inpainting_fill = 1 proc = process_images(p) proc.images.append(d_m) if save_alpha_crop: proc.images.append(alpha_crop) return proc