miracl_bm25_negative / miracl_bm25_negative.py
crystina-z's picture
Update miracl_bm25_negative.py
91fe4d9 verified
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.Wikipedia
# Lint as: python3
"""MsMarco Passage dataset."""
import json
import datasets
_CITATION = """
"""
_DESCRIPTION = "dataset load script for MIRACL"
ALL = 'all'
LANGS = "ar bn en es fa fi fr hi id ja ko ru sw te th zh".split()
assert len(LANGS) == 16
_DATASET_URLS = {
lang_abbr: {
# 'train': "https://huggingface.co/datasets/Tevatron/msmarco-passage/resolve/main/train.jsonl.gz",
# 'dev': "https://huggingface.co/datasets/Tevatron/msmarco-passage/resolve/main/dev.jsonl.gz",
# 'train': f"https://huggingface.co/datasets/crystina-z/miracl-bm25-negative/resolve/main/miracl_train_bm25_neg_top100_random30.{lang_abbr}.jsonl.gz"
# 'train': f"https://huggingface.co/datasets/crystina-z/miracl-bm25-negative/blob/main/miracl_train_bm25_neg_top100_random30.{lang_abbr}.jsonl.gz"
'train': f"https://huggingface.co/datasets/crystina-z/miracl_bm25_negative/resolve/main/miracl_train_bm25_neg_top100_random30.{lang_abbr}.jsonl.gz"
} for lang_abbr in LANGS
}
VERSION = datasets.Version("1.0.0")
class MsMarcoPassage(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("0.0.1")
BUILDER_CONFIGS = [
datasets.BuilderConfig(version=VERSION,
name=lang_abbr,
description=f"MIRACL ({lang_abbr}) training datasets")
for lang_abbr in [*LANGS, ALL]
]
def _info(self):
features = datasets.Features({
'query_id': datasets.Value('string'),
'query': datasets.Value('string'),
'positive_passages': [
{'docid': datasets.Value('string'), 'title': datasets.Value('string'), 'text': datasets.Value('string')}
],
'negative_passages': [
{'docid': datasets.Value('string'), 'title': datasets.Value('string'), 'text': datasets.Value('string')}
],
})
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
supervised_keys=None,
# Homepage of the dataset for documentation
homepage="",
# License for the dataset if available
license="",
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
lang_abbr = self.config.name
if self.config.data_files:
downloaded_files = self.config.data_files
else:
if lang_abbr != ALL:
file_names = _DATASET_URLS[lang_abbr]
else:
file_names = {"train": [_DATASET_URLS[l]["train"] for l in _DATASET_URLS]}
downloaded_files = dl_manager.download_and_extract(file_names)
splits = [
datasets.SplitGenerator(
name=split,
gen_kwargs={
"files": [downloaded_files[split]] if isinstance(downloaded_files[split], str) else downloaded_files[split],
},
) for split in downloaded_files
]
return splits
def _generate_examples(self, files):
"""Yields examples."""
for i, filepath in enumerate(files):
with open(filepath, encoding="utf-8") as f:
for line in f:
data = json.loads(line)
if data.get('negative_passages') is None:
data['negative_passages'] = []
if data.get('positive_passages') is None:
data['positive_passages'] = []
yield f"{i}_" + data['query_id'], data