|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""MsMarco Passage dataset.""" |
|
|
|
import json |
|
|
|
import datasets |
|
|
|
_CITATION = """ |
|
""" |
|
|
|
_DESCRIPTION = "dataset load script for MIRACL" |
|
|
|
ALL = 'all' |
|
LANGS = "ar bn en es fa fi fr hi id ja ko ru sw te th zh".split() |
|
assert len(LANGS) == 16 |
|
|
|
_DATASET_URLS = { |
|
lang_abbr: { |
|
|
|
|
|
|
|
|
|
'train': f"https://huggingface.co/datasets/crystina-z/miracl_bm25_negative/resolve/main/miracl_train_bm25_neg_top100_random30.{lang_abbr}.jsonl.gz" |
|
} for lang_abbr in LANGS |
|
} |
|
VERSION = datasets.Version("1.0.0") |
|
|
|
|
|
class MsMarcoPassage(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("0.0.1") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(version=VERSION, |
|
name=lang_abbr, |
|
description=f"MIRACL ({lang_abbr}) training datasets") |
|
for lang_abbr in [*LANGS, ALL] |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features({ |
|
'query_id': datasets.Value('string'), |
|
'query': datasets.Value('string'), |
|
'positive_passages': [ |
|
{'docid': datasets.Value('string'), 'title': datasets.Value('string'), 'text': datasets.Value('string')} |
|
], |
|
'negative_passages': [ |
|
{'docid': datasets.Value('string'), 'title': datasets.Value('string'), 'text': datasets.Value('string')} |
|
], |
|
}) |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
supervised_keys=None, |
|
|
|
homepage="", |
|
|
|
license="", |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
lang_abbr = self.config.name |
|
|
|
if self.config.data_files: |
|
downloaded_files = self.config.data_files |
|
else: |
|
if lang_abbr != ALL: |
|
file_names = _DATASET_URLS[lang_abbr] |
|
else: |
|
file_names = {"train": [_DATASET_URLS[l]["train"] for l in _DATASET_URLS]} |
|
downloaded_files = dl_manager.download_and_extract(file_names) |
|
|
|
splits = [ |
|
datasets.SplitGenerator( |
|
name=split, |
|
gen_kwargs={ |
|
"files": [downloaded_files[split]] if isinstance(downloaded_files[split], str) else downloaded_files[split], |
|
}, |
|
) for split in downloaded_files |
|
] |
|
return splits |
|
|
|
def _generate_examples(self, files): |
|
"""Yields examples.""" |
|
for i, filepath in enumerate(files): |
|
with open(filepath, encoding="utf-8") as f: |
|
for line in f: |
|
data = json.loads(line) |
|
if data.get('negative_passages') is None: |
|
data['negative_passages'] = [] |
|
if data.get('positive_passages') is None: |
|
data['positive_passages'] = [] |
|
yield f"{i}_" + data['query_id'], data |
|
|