# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.Wikipedia # Lint as: python3 """MsMarco Passage dataset.""" import json import datasets _CITATION = """ """ _DESCRIPTION = "dataset load script for MIRACL" ALL = 'all' LANGS = "ar bn en es fa fi fr hi id ja ko ru sw te th zh".split() assert len(LANGS) == 16 _DATASET_URLS = { lang_abbr: { # 'train': "https://huggingface.co/datasets/Tevatron/msmarco-passage/resolve/main/train.jsonl.gz", # 'dev': "https://huggingface.co/datasets/Tevatron/msmarco-passage/resolve/main/dev.jsonl.gz", # 'train': f"https://huggingface.co/datasets/crystina-z/miracl-bm25-negative/resolve/main/miracl_train_bm25_neg_top100_random30.{lang_abbr}.jsonl.gz" # 'train': f"https://huggingface.co/datasets/crystina-z/miracl-bm25-negative/blob/main/miracl_train_bm25_neg_top100_random30.{lang_abbr}.jsonl.gz" 'train': f"https://huggingface.co/datasets/crystina-z/miracl_bm25_negative/resolve/main/miracl_train_bm25_neg_top100_random30.{lang_abbr}.jsonl.gz" } for lang_abbr in LANGS } VERSION = datasets.Version("1.0.0") class MsMarcoPassage(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("0.0.1") BUILDER_CONFIGS = [ datasets.BuilderConfig(version=VERSION, name=lang_abbr, description=f"MIRACL ({lang_abbr}) training datasets") for lang_abbr in [*LANGS, ALL] ] def _info(self): features = datasets.Features({ 'query_id': datasets.Value('string'), 'query': datasets.Value('string'), 'positive_passages': [ {'docid': datasets.Value('string'), 'title': datasets.Value('string'), 'text': datasets.Value('string')} ], 'negative_passages': [ {'docid': datasets.Value('string'), 'title': datasets.Value('string'), 'text': datasets.Value('string')} ], }) return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=features, # Here we define them above because they are different between the two configurations supervised_keys=None, # Homepage of the dataset for documentation homepage="", # License for the dataset if available license="", # Citation for the dataset citation=_CITATION, ) def _split_generators(self, dl_manager): lang_abbr = self.config.name if self.config.data_files: downloaded_files = self.config.data_files else: if lang_abbr != ALL: file_names = _DATASET_URLS[lang_abbr] else: file_names = {"train": [_DATASET_URLS[l]["train"] for l in _DATASET_URLS]} downloaded_files = dl_manager.download_and_extract(file_names) splits = [ datasets.SplitGenerator( name=split, gen_kwargs={ "files": [downloaded_files[split]] if isinstance(downloaded_files[split], str) else downloaded_files[split], }, ) for split in downloaded_files ] return splits def _generate_examples(self, files): """Yields examples.""" for i, filepath in enumerate(files): with open(filepath, encoding="utf-8") as f: for line in f: data = json.loads(line) if data.get('negative_passages') is None: data['negative_passages'] = [] if data.get('positive_passages') is None: data['positive_passages'] = [] yield f"{i}_" + data['query_id'], data