File size: 4,652 Bytes
a279e75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""mMARCO dataset."""

from collections import defaultdict
from gc import collect
import datasets


_CITATION = """
@misc{bonifacio2021mmarco,
      title={mMARCO: A Multilingual Version of the MS MARCO Passage Ranking Dataset},
      author={Luiz Henrique Bonifacio and Israel Campiotti and Vitor Jeronymo and Hugo Queiroz Abonizio and Roberto Lotufo and Rodrigo Nogueira},
      year={2021},
      eprint={2108.13897},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
"""

_URL = "https://github.com/unicamp-dl/mMARCO"

_DESCRIPTION = """
mMARCO translated datasets
"""


_BASE_URLS = {
    "collections": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/google/collections/",
    "queries-train": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/google/queries/train/",
    "queries-dev": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/google/queries/dev/",
    "runs": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/google/runs/",
    "train": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/triples.train.ids.small.tsv",
}

LANGUAGES = [
    "arabic",
    "chinese",
    "dutch",
    "english",
    "french",
    "german",
    "hindi",
    "indonesian",
    "italian",
    "japanese",
    "portuguese",
    "russian",
    "spanish",
    "vietnamese",
]


class MMarcoDev(datasets.GeneratorBasedBuilder):

    BUILDER_CONFIGS = (
        [
            datasets.BuilderConfig(
                name=language,
                description=f"{language.capitalize()} dev queries",
                version=datasets.Version("2.0.0"),
            )
            for language in LANGUAGES
        ]
    )
    

    DEFAULT_CONFIG_NAME = "english"

    def _info(self):
        name = self.config.name
        assert name in LANGUAGES, f"Does not support languge {name}. Must be one of {LANGUAGES}."

        features = {
            "query_id": datasets.Value("string"),
            "query": datasets.Value("string"),
            "positive_passages": [
                {'docid': datasets.Value('string'), 'text': datasets.Value('string')}
            ],
            "negative_passages": [
                {'docid': datasets.Value('string'), 'text': datasets.Value('string')}
            ],
        }

        return datasets.DatasetInfo(
            description=f"{_DESCRIPTION}\n{self.config.description}",
            features=datasets.Features(features),
            supervised_keys=None,
            homepage=_URL,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        languages = [self.config.name] if self.config.name in LANGUAGES else LANGUAGES
        urls = {
            # "collection": {lang: _BASE_URLS["collections"] + lang + "_collection.tsv" for lang in languages},
            "queries": {lang: _BASE_URLS["queries-dev"] + lang + "_queries.dev.small.tsv" for lang in languages},
        }
        dl_path = dl_manager.download_and_extract(urls)

        return [
            datasets.SplitGenerator(
                name="dev",
                gen_kwargs={
                    "files": dl_path["train"],
                    "args": {
                        "queries": dl_path["queries"],
                    },
                },
            )
        ]

    def _generate_examples(self, files, args=None):
        """Yields examples."""

        lang = self.config.name
        assert lang in LANGUAGES

        # loading
        queries_path = args["queries"][lang]
        with open(queries_path, encoding="utf-8") as f:
            for line in f:
                query_id, query = line.rstrip().split("\t")
                features = {
                    "query_id": query_id,
                    "query": query,
                    "positive_passages": [],
                    "negative_passages": [],
                }
                yield f"{lang}-{query_id}", features