# coding=utf-8 # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """mMARCO dataset.""" from collections import defaultdict from gc import collect import datasets _CITATION = """ @misc{bonifacio2021mmarco, title={mMARCO: A Multilingual Version of the MS MARCO Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Vitor Jeronymo and Hugo Queiroz Abonizio and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, eprint={2108.13897}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ _URL = "https://github.com/unicamp-dl/mMARCO" _DESCRIPTION = """ mMARCO translated datasets """ _BASE_URLS = { "collections": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/google/collections/", "queries-train": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/google/queries/train/", "queries-dev": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/google/queries/dev/", "runs": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/google/runs/", "train": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/triples.train.ids.small.tsv", } LANGUAGES = [ "arabic", "chinese", "dutch", "english", "french", "german", "hindi", "indonesian", "italian", "japanese", "portuguese", "russian", "spanish", "vietnamese", ] class MMarcoDev(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = ( [ datasets.BuilderConfig( name=language, description=f"{language.capitalize()} dev queries", version=datasets.Version("2.0.0"), ) for language in LANGUAGES ] ) DEFAULT_CONFIG_NAME = "english" def _info(self): name = self.config.name assert name in LANGUAGES, f"Does not support languge {name}. Must be one of {LANGUAGES}." features = { "query_id": datasets.Value("string"), "query": datasets.Value("string"), "positive_passages": [ {'docid': datasets.Value('string'), 'text': datasets.Value('string')} ], "negative_passages": [ {'docid': datasets.Value('string'), 'text': datasets.Value('string')} ], } return datasets.DatasetInfo( description=f"{_DESCRIPTION}\n{self.config.description}", features=datasets.Features(features), supervised_keys=None, homepage=_URL, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" languages = [self.config.name] if self.config.name in LANGUAGES else LANGUAGES urls = { # "collection": {lang: _BASE_URLS["collections"] + lang + "_collection.tsv" for lang in languages}, "queries": {lang: _BASE_URLS["queries-dev"] + lang + "_queries.dev.small.tsv" for lang in languages}, } dl_path = dl_manager.download_and_extract(urls) return [ datasets.SplitGenerator( name="dev", gen_kwargs={ "args": { "queries": dl_path["queries"], }, }, ) ] def _generate_examples(self, args=None): """Yields examples.""" lang = self.config.name assert lang in LANGUAGES # loading queries_path = args["queries"][lang] with open(queries_path, encoding="utf-8") as f: for line in f: query_id, query = line.rstrip().split("\t") features = { "query_id": query_id, "query": query, "positive_passages": [], "negative_passages": [], } yield f"{lang}-{query_id}", features