File size: 3,538 Bytes
1241bdd 3983ad8 1241bdd fa51f44 1241bdd fa51f44 1241bdd c0d3702 1241bdd 3983ad8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
import json
import datasets
from dataclasses import dataclass
_CITATION = '''
@article{mrtydi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
'''
fields = [
'title', 'desc', 'desc_title'
]
_DESCRIPTION = 'dataset load script for Mr. TyDi'
_DATASET_URLS = {
field: {
'test': f'https://huggingface.co/datasets/crystina-z/neuclir/resolve/main/data/topics.neuclir22.en.{field}.tsv',
} for field in fields
}
class NeuCLIR(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [datasets.BuilderConfig(
version=datasets.Version('1.1.0'),
name=field, description=f'NeuCLIR dataset in language {field}.'
) for field in fields
]
def _info(self):
features = datasets.Features({
'query_id': datasets.Value('string'),
'query': datasets.Value('string'),
'positive_passages': [{
'docid': datasets.Value('string'),
'text': datasets.Value('string'), 'title': datasets.Value('string')
}],
'negative_passages': [{
'docid': datasets.Value('string'),
'text': datasets.Value('string'), 'title': datasets.Value('string'),
}],
})
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
supervised_keys=None,
# Homepage of the dataset for documentation
homepage='https://github.com/castorini/mr.tydi',
# License for the dataset if available
license='',
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
lang = self.config.name
downloaded_files = dl_manager.download_and_extract(_DATASET_URLS[lang])
splits = [
datasets.SplitGenerator(
name='test',
gen_kwargs={
'filepath': downloaded_files['test'],
},
),
]
return splits
def _generate_examples(self, filepath):
lang = self.config.name
with open(filepath, encoding="utf-8") as f:
for i, line in enumerate(f):
qid, query = line.strip().split('\t')
data = {'query_id': qid, 'query': query}
for feature in ['negative_passages', 'positive_passages']:
data[feature] = []
yield qid, data
|