Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,122 @@
|
|
1 |
---
|
2 |
license: cc-by-nc-4.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: cc-by-nc-4.0
|
3 |
---
|
4 |
+
|
5 |
+
# **CloudSEN12 - scribble**
|
6 |
+
## **A Benchmark Dataset for Cloud Semantic Understanding**
|
7 |
+
|
8 |
+
![CloudSEN12 Images](https://cloudsen12.github.io/thumbnails/cloudsen12.gif)
|
9 |
+
|
10 |
+
CloudSEN12 is a LARGE dataset (~1 TB) for cloud semantic understanding that consists of 49,400 image patches (IP) that are
|
11 |
+
evenly spread throughout all continents except Antarctica. Each IP covers 5090 x 5090 meters and contains data from Sentinel-2
|
12 |
+
levels 1C and 2A, hand-crafted annotations of thick and thin clouds and cloud shadows, Sentinel-1 Synthetic Aperture Radar (SAR),
|
13 |
+
digital elevation model, surface water occurrence, land cover classes, and cloud mask results from six cutting-edge
|
14 |
+
cloud detection algorithms.
|
15 |
+
|
16 |
+
CloudSEN12 is designed to support both weakly and self-/semi-supervised learning strategies by including three distinct forms of
|
17 |
+
hand-crafted labeling data: high-quality, scribble and no-annotation. For more details on how we created the dataset see our
|
18 |
+
paper.
|
19 |
+
|
20 |
+
Ready to start using **[CloudSEN12](https://cloudsen12.github.io/)**?
|
21 |
+
|
22 |
+
**[Download Dataset](https://cloudsen12.github.io/download.html)**
|
23 |
+
|
24 |
+
**[Paper - Scientific Data](https://www.nature.com/articles/s41597-022-01878-2)**
|
25 |
+
|
26 |
+
**[Inference on a new S2 image](https://colab.research.google.com/github/cloudsen12/examples/blob/master/example02.ipynb)**
|
27 |
+
|
28 |
+
**[Enter to cloudApp](https://github.com/cloudsen12/CloudApp)**
|
29 |
+
|
30 |
+
**[CloudSEN12 in Google Earth Engine](https://gee-community-catalog.org/projects/cloudsen12/)**
|
31 |
+
|
32 |
+
|
33 |
+
<br>
|
34 |
+
|
35 |
+
### **Description**
|
36 |
+
|
37 |
+
<br>
|
38 |
+
|
39 |
+
| File | Name | Scale | Wavelength | Description | Datatype |
|
40 |
+
|---------------|-----------------|--------|------------------------------|------------------------------------------------------------------------------------------------------|----------|
|
41 |
+
| L1C_ & L2A_ | B1 | 0.0001 | 443.9nm (S2A) / 442.3nm (S2B)| Aerosols. | np.int16 |
|
42 |
+
| | B2 | 0.0001 | 496.6nm (S2A) / 492.1nm (S2B)| Blue. | np.int16 |
|
43 |
+
| | B3 | 0.0001 | 560nm (S2A) / 559nm (S2B) | Green. | np.int16 |
|
44 |
+
| | B4 | 0.0001 | 664.5nm (S2A) / 665nm (S2B) | Red. | np.int16 |
|
45 |
+
| | B5 | 0.0001 | 703.9nm (S2A) / 703.8nm (S2B)| Red Edge 1. | np.int16 |
|
46 |
+
| | B6 | 0.0001 | 740.2nm (S2A) / 739.1nm (S2B)| Red Edge 2. | np.int16 |
|
47 |
+
| | B7 | 0.0001 | 782.5nm (S2A) / 779.7nm (S2B)| Red Edge 3. | np.int16 |
|
48 |
+
| | B8 | 0.0001 | 835.1nm (S2A) / 833nm (S2B) | NIR. | np.int16 |
|
49 |
+
| | B8A | 0.0001 | 864.8nm (S2A) / 864nm (S2B) | Red Edge 4. | np.int16 |
|
50 |
+
| | B9 | 0.0001 | 945nm (S2A) / 943.2nm (S2B) | Water vapor. | np.int16 |
|
51 |
+
| | B11 | 0.0001 | 1613.7nm (S2A) / 1610.4nm (S2B)| SWIR 1. | np.int16 |
|
52 |
+
| | B12 | 0.0001 | 2202.4nm (S2A) / 2185.7nm (S2B)| SWIR 2. | np.int16 |
|
53 |
+
| L1C_ | B10 | 0.0001 | 1373.5nm (S2A) / 1376.9nm (S2B)| Cirrus. | np.int16 |
|
54 |
+
| L2A_ | AOT | 0.001 | - | Aerosol Optical Thickness. | np.int16 |
|
55 |
+
| | WVP | 0.001 | - | Water Vapor Pressure. | np.int16 |
|
56 |
+
| | TCI_R | 1 | - | True Color Image, Red. | np.int16 |
|
57 |
+
| | TCI_G | 1 | - | True Color Image, Green. | np.int16 |
|
58 |
+
| | TCI_B | 1 | - | True Color Image, Blue. | np.int16 |
|
59 |
+
| S1_ | VV | 1 | 5.405GHz | Dual-band cross-polarization, vertical transmit/horizontal receive. |np.float32|
|
60 |
+
| | VH | 1 | 5.405GHz | Single co-polarization, vertical transmit/vertical receive. |np.float32|
|
61 |
+
| | angle | 1 | - | Incidence angle generated by interpolating the ‘incidenceAngle’ property. |np.float32|
|
62 |
+
| EXTRA_ | CDI | 0.0001 | - | Cloud Displacement Index. | np.int16 |
|
63 |
+
| | Shwdirection | 0.01 | - | Azimuth. Values range from 0°- 360°. | np.int16 |
|
64 |
+
| | elevation | 1 | - | Elevation in meters. Obtained from MERIT Hydro datasets. | np.int16 |
|
65 |
+
| | ocurrence | 1 | - | JRC Global Surface Water. The frequency with which water was present. | np.int16 |
|
66 |
+
| | LC100 | 1 | - | Copernicus land cover product. CGLS-LC100 Collection 3. | np.int16 |
|
67 |
+
| | LC10 | 1 | - | ESA WorldCover 10m v100 product. | np.int16 |
|
68 |
+
| LABEL_ | fmask | 1 | - | Fmask4.0 cloud masking. | np.int16 |
|
69 |
+
| | QA60 | 1 | - | SEN2 Level-1C cloud mask. | np.int8 |
|
70 |
+
| | s2cloudless | 1 | - | sen2cloudless results. | np.int8 |
|
71 |
+
| | sen2cor | 1 | - | Scene Classification band. Obtained from SEN2 level 2A. | np.int8 |
|
72 |
+
| | cd_fcnn_rgbi | 1 | - | López-Puigdollers et al. results based on RGBI bands. | np.int8 |
|
73 |
+
| |cd_fcnn_rgbi_swir| 1 | - | López-Puigdollers et al. results based on RGBISWIR bands. | np.int8 |
|
74 |
+
| | kappamask_L1C | 1 | - | KappaMask results using SEN2 level L1C as input. | np.int8 |
|
75 |
+
| | kappamask_L2A | 1 | - | KappaMask results using SEN2 level L2A as input. | np.int8 |
|
76 |
+
| | manual_hq | 1 | | High-quality pixel-wise manual annotation. | np.int8 |
|
77 |
+
| | manual_sc | 1 | | Scribble manual annotation. | np.int8 |
|
78 |
+
|
79 |
+
<br>
|
80 |
+
|
81 |
+
|
82 |
+
### **np.memmap shape information**
|
83 |
+
|
84 |
+
<br>
|
85 |
+
|
86 |
+
**train shape: (3000, 512, 512)**
|
87 |
+
<br>
|
88 |
+
**val shape: (3000, 512, 512)**
|
89 |
+
<br>
|
90 |
+
**test shape: (3000, 512, 512)**
|
91 |
+
|
92 |
+
<br>
|
93 |
+
|
94 |
+
### **Example**
|
95 |
+
|
96 |
+
<br>
|
97 |
+
|
98 |
+
```py
|
99 |
+
import numpy as np
|
100 |
+
|
101 |
+
# Read high-quality train
|
102 |
+
train_shape = (3000, 512, 512)
|
103 |
+
B4X = np.memmap('train/L1C_B04.dat', dtype='int16', mode='r', shape=train_shape)
|
104 |
+
y = np.memmap('train1/manual_hq.dat', dtype='int8', mode='r', shape=train_shape)
|
105 |
+
|
106 |
+
# Read high-quality val
|
107 |
+
val_shape = (3000, 512, 512)
|
108 |
+
B4X = np.memmap('val/L1C_B04.dat', dtype='int16', mode='r', shape=val_shape)
|
109 |
+
y = np.memmap('train2/manual_hq.dat', dtype='int8', mode='r', shape=val_shape)
|
110 |
+
|
111 |
+
|
112 |
+
# Read high-quality test
|
113 |
+
test_shape = (3000, 512, 512)
|
114 |
+
B4X = np.memmap('test/L1C_B04.dat', dtype='int16', mode='r', shape=test_shape)
|
115 |
+
y = np.memmap('train3/manual_hq.dat', dtype='int8', mode='r', shape=test_shape)
|
116 |
+
```
|
117 |
+
<br>
|
118 |
+
|
119 |
+
|
120 |
+
This work has been partially supported by the Spanish Ministry of Science and Innovation project
|
121 |
+
PID2019-109026RB-I00 (MINECO-ERDF) and the Austrian Space Applications Programme within the
|
122 |
+
**[SemantiX project](https://austria-in-space.at/en/projects/2019/semantix.php)**.
|