csaybar commited on
Commit
847f6af
1 Parent(s): 559824b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +119 -0
README.md CHANGED
@@ -1,3 +1,122 @@
1
  ---
2
  license: cc-by-nc-4.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-nc-4.0
3
  ---
4
+
5
+ # **CloudSEN12 - scribble**
6
+ ## **A Benchmark Dataset for Cloud Semantic Understanding**
7
+
8
+ ![CloudSEN12 Images](https://cloudsen12.github.io/thumbnails/cloudsen12.gif)
9
+
10
+ CloudSEN12 is a LARGE dataset (~1 TB) for cloud semantic understanding that consists of 49,400 image patches (IP) that are
11
+ evenly spread throughout all continents except Antarctica. Each IP covers 5090 x 5090 meters and contains data from Sentinel-2
12
+ levels 1C and 2A, hand-crafted annotations of thick and thin clouds and cloud shadows, Sentinel-1 Synthetic Aperture Radar (SAR),
13
+ digital elevation model, surface water occurrence, land cover classes, and cloud mask results from six cutting-edge
14
+ cloud detection algorithms.
15
+
16
+ CloudSEN12 is designed to support both weakly and self-/semi-supervised learning strategies by including three distinct forms of
17
+ hand-crafted labeling data: high-quality, scribble and no-annotation. For more details on how we created the dataset see our
18
+ paper.
19
+
20
+ Ready to start using **[CloudSEN12](https://cloudsen12.github.io/)**?
21
+
22
+ **[Download Dataset](https://cloudsen12.github.io/download.html)**
23
+
24
+ **[Paper - Scientific Data](https://www.nature.com/articles/s41597-022-01878-2)**
25
+
26
+ **[Inference on a new S2 image](https://colab.research.google.com/github/cloudsen12/examples/blob/master/example02.ipynb)**
27
+
28
+ **[Enter to cloudApp](https://github.com/cloudsen12/CloudApp)**
29
+
30
+ **[CloudSEN12 in Google Earth Engine](https://gee-community-catalog.org/projects/cloudsen12/)**
31
+
32
+
33
+ <br>
34
+
35
+ ### **Description**
36
+
37
+ <br>
38
+
39
+ | File | Name | Scale | Wavelength | Description | Datatype |
40
+ |---------------|-----------------|--------|------------------------------|------------------------------------------------------------------------------------------------------|----------|
41
+ | L1C_ & L2A_ | B1 | 0.0001 | 443.9nm (S2A) / 442.3nm (S2B)| Aerosols. | np.int16 |
42
+ | | B2 | 0.0001 | 496.6nm (S2A) / 492.1nm (S2B)| Blue. | np.int16 |
43
+ | | B3 | 0.0001 | 560nm (S2A) / 559nm (S2B) | Green. | np.int16 |
44
+ | | B4 | 0.0001 | 664.5nm (S2A) / 665nm (S2B) | Red. | np.int16 |
45
+ | | B5 | 0.0001 | 703.9nm (S2A) / 703.8nm (S2B)| Red Edge 1. | np.int16 |
46
+ | | B6 | 0.0001 | 740.2nm (S2A) / 739.1nm (S2B)| Red Edge 2. | np.int16 |
47
+ | | B7 | 0.0001 | 782.5nm (S2A) / 779.7nm (S2B)| Red Edge 3. | np.int16 |
48
+ | | B8 | 0.0001 | 835.1nm (S2A) / 833nm (S2B) | NIR. | np.int16 |
49
+ | | B8A | 0.0001 | 864.8nm (S2A) / 864nm (S2B) | Red Edge 4. | np.int16 |
50
+ | | B9 | 0.0001 | 945nm (S2A) / 943.2nm (S2B) | Water vapor. | np.int16 |
51
+ | | B11 | 0.0001 | 1613.7nm (S2A) / 1610.4nm (S2B)| SWIR 1. | np.int16 |
52
+ | | B12 | 0.0001 | 2202.4nm (S2A) / 2185.7nm (S2B)| SWIR 2. | np.int16 |
53
+ | L1C_ | B10 | 0.0001 | 1373.5nm (S2A) / 1376.9nm (S2B)| Cirrus. | np.int16 |
54
+ | L2A_ | AOT | 0.001 | - | Aerosol Optical Thickness. | np.int16 |
55
+ | | WVP | 0.001 | - | Water Vapor Pressure. | np.int16 |
56
+ | | TCI_R | 1 | - | True Color Image, Red. | np.int16 |
57
+ | | TCI_G | 1 | - | True Color Image, Green. | np.int16 |
58
+ | | TCI_B | 1 | - | True Color Image, Blue. | np.int16 |
59
+ | S1_ | VV | 1 | 5.405GHz | Dual-band cross-polarization, vertical transmit/horizontal receive. |np.float32|
60
+ | | VH | 1 | 5.405GHz | Single co-polarization, vertical transmit/vertical receive. |np.float32|
61
+ | | angle | 1 | - | Incidence angle generated by interpolating the ‘incidenceAngle’ property. |np.float32|
62
+ | EXTRA_ | CDI | 0.0001 | - | Cloud Displacement Index. | np.int16 |
63
+ | | Shwdirection | 0.01 | - | Azimuth. Values range from 0°- 360°. | np.int16 |
64
+ | | elevation | 1 | - | Elevation in meters. Obtained from MERIT Hydro datasets. | np.int16 |
65
+ | | ocurrence | 1 | - | JRC Global Surface Water. The frequency with which water was present. | np.int16 |
66
+ | | LC100 | 1 | - | Copernicus land cover product. CGLS-LC100 Collection 3. | np.int16 |
67
+ | | LC10 | 1 | - | ESA WorldCover 10m v100 product. | np.int16 |
68
+ | LABEL_ | fmask | 1 | - | Fmask4.0 cloud masking. | np.int16 |
69
+ | | QA60 | 1 | - | SEN2 Level-1C cloud mask. | np.int8 |
70
+ | | s2cloudless | 1 | - | sen2cloudless results. | np.int8 |
71
+ | | sen2cor | 1 | - | Scene Classification band. Obtained from SEN2 level 2A. | np.int8 |
72
+ | | cd_fcnn_rgbi | 1 | - | López-Puigdollers et al. results based on RGBI bands. | np.int8 |
73
+ | |cd_fcnn_rgbi_swir| 1 | - | López-Puigdollers et al. results based on RGBISWIR bands. | np.int8 |
74
+ | | kappamask_L1C | 1 | - | KappaMask results using SEN2 level L1C as input. | np.int8 |
75
+ | | kappamask_L2A | 1 | - | KappaMask results using SEN2 level L2A as input. | np.int8 |
76
+ | | manual_hq | 1 | | High-quality pixel-wise manual annotation. | np.int8 |
77
+ | | manual_sc | 1 | | Scribble manual annotation. | np.int8 |
78
+
79
+ <br>
80
+
81
+
82
+ ### **np.memmap shape information**
83
+
84
+ <br>
85
+
86
+ **train shape: (3000, 512, 512)**
87
+ <br>
88
+ **val shape: (3000, 512, 512)**
89
+ <br>
90
+ **test shape: (3000, 512, 512)**
91
+
92
+ <br>
93
+
94
+ ### **Example**
95
+
96
+ <br>
97
+
98
+ ```py
99
+ import numpy as np
100
+
101
+ # Read high-quality train
102
+ train_shape = (3000, 512, 512)
103
+ B4X = np.memmap('train/L1C_B04.dat', dtype='int16', mode='r', shape=train_shape)
104
+ y = np.memmap('train1/manual_hq.dat', dtype='int8', mode='r', shape=train_shape)
105
+
106
+ # Read high-quality val
107
+ val_shape = (3000, 512, 512)
108
+ B4X = np.memmap('val/L1C_B04.dat', dtype='int16', mode='r', shape=val_shape)
109
+ y = np.memmap('train2/manual_hq.dat', dtype='int8', mode='r', shape=val_shape)
110
+
111
+
112
+ # Read high-quality test
113
+ test_shape = (3000, 512, 512)
114
+ B4X = np.memmap('test/L1C_B04.dat', dtype='int16', mode='r', shape=test_shape)
115
+ y = np.memmap('train3/manual_hq.dat', dtype='int8', mode='r', shape=test_shape)
116
+ ```
117
+ <br>
118
+
119
+
120
+ This work has been partially supported by the Spanish Ministry of Science and Innovation project
121
+ PID2019-109026RB-I00 (MINECO-ERDF) and the Austrian Space Applications Programme within the
122
+ **[SemantiX project](https://austria-in-space.at/en/projects/2019/semantix.php)**.