"""SQuAD Bengali Dataset""" import os import json import datasets _CITATION = """\ @misc{bhattacharjee2021banglabert, title={BanglaBERT: Combating Embedding Barrier in Multilingual Models for Low-Resource Language Understanding}, author={Abhik Bhattacharjee and Tahmid Hasan and Kazi Samin and Md Saiful Islam and M. Sohel Rahman and Anindya Iqbal and Rifat Shahriyar}, year={2021}, eprint={2101.00204}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ _DESCRIPTION = """\ SQuAD-bn is derived from the SQuAD-2.0 and TyDI-QA datasets. """ _HOMEPAGE = "https://github.com/csebuetnlp/banglabert" _LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0)" _URL = "https://huggingface.co/datasets/csebuetnlp/squad_bn/resolve/main/data/squad_bn.tar.bz2" _VERSION = datasets.Version("0.0.1") class SquadBn(datasets.GeneratorBasedBuilder): """SQuAD Bengali Dataset""" BUILDER_CONFIGS = [ datasets.BuilderConfig( name="squad_bn", version=_VERSION, description=_DESCRIPTION, ) ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "title": datasets.Value("string"), "context": datasets.Value("string"), "question": datasets.Value("string"), "answers": datasets.features.Sequence( { "text": datasets.Value("string"), "answer_start": datasets.Value("int32"), } ), } ), supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" data_dir = os.path.join(dl_manager.download_and_extract(_URL), "squad_bn") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": os.path.join(data_dir, "train.json"), }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": os.path.join(data_dir, "test.json"), }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepath": os.path.join(data_dir, "validation.json"), }, ), ] def _generate_examples(self, filepath): """Yields examples as (key, example) tuples.""" with open(filepath, encoding="utf-8") as f: data = json.load(f) for example in data["data"]: title = example.get("title", "") for paragraph in example["paragraphs"]: context = paragraph["context"].strip() for qa in paragraph["qas"]: question = qa["question"].strip() id_ = qa["id"] answer_starts = [answer["answer_start"] for answer in qa["answers"]] answers = [answer["text"].strip() for answer in qa["answers"]] yield id_, { "title": title, "context": context, "question": question, "id": id_, "answers": { "answer_start": answer_starts, "text": answers, }, }